A nonlinear preconditioner for optimum experimental design problems
We show how to efficiently compute A-optimal experimental designs, which are formulated in terms of the minimization of the trace of the covariance matrix of the underlying regression process, using quasi-Newton sequential quadratic programming methods. In particular, we introduce a modification of...
Guardado en:
Autores principales: | Mario S. Mommer, Andreas Sommer, Johannes P. Schlöder, H. Georg Bock |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5227be4f681c41179ccb2281a60abe78 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A modification of the αBB method for box-constrained optimization and an application to inverse kinematics
por: Gabriele Eichfelder, et al.
Publicado: (2016) -
Sufficient pruning conditions for MINLP in gas network design
por: Jesco Humpola, et al.
Publicado: (2017) -
An interior-point method for nonlinear optimization problems with locatable and separable nonsmoothness
por: Martin Schmidt
Publicado: (2015) -
A tight MIP formulation of the unit commitment problem with start-up and shut-down constraints
por: C. Gentile, et al.
Publicado: (2017) -
Joint location and pricing within a user-optimized environment
por: Teodora Dan, et al.
Publicado: (2020)