Capturing chemical intuition in synthesis of metal-organic frameworks

Synthetic chemists develop a "chemical intuition" over years of experience in the lab. Here the authors combine machine learning of (partially) failed experiments with robotic synthesis to capture this intuition used in searching for the optimal synthesis conditions of metal-organic framew...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Seyed Mohamad Moosavi, Arunraj Chidambaram, Leopold Talirz, Maciej Haranczyk, Kyriakos C. Stylianou, Berend Smit
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/52373b3681854fd292ba1296fab6d35b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:52373b3681854fd292ba1296fab6d35b
record_format dspace
spelling oai:doaj.org-article:52373b3681854fd292ba1296fab6d35b2021-12-02T17:01:39ZCapturing chemical intuition in synthesis of metal-organic frameworks10.1038/s41467-019-08483-92041-1723https://doaj.org/article/52373b3681854fd292ba1296fab6d35b2019-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-08483-9https://doaj.org/toc/2041-1723Synthetic chemists develop a "chemical intuition" over years of experience in the lab. Here the authors combine machine learning of (partially) failed experiments with robotic synthesis to capture this intuition used in searching for the optimal synthesis conditions of metal-organic frameworks.Seyed Mohamad MoosaviArunraj ChidambaramLeopold TalirzMaciej HaranczykKyriakos C. StylianouBerend SmitNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-7 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Seyed Mohamad Moosavi
Arunraj Chidambaram
Leopold Talirz
Maciej Haranczyk
Kyriakos C. Stylianou
Berend Smit
Capturing chemical intuition in synthesis of metal-organic frameworks
description Synthetic chemists develop a "chemical intuition" over years of experience in the lab. Here the authors combine machine learning of (partially) failed experiments with robotic synthesis to capture this intuition used in searching for the optimal synthesis conditions of metal-organic frameworks.
format article
author Seyed Mohamad Moosavi
Arunraj Chidambaram
Leopold Talirz
Maciej Haranczyk
Kyriakos C. Stylianou
Berend Smit
author_facet Seyed Mohamad Moosavi
Arunraj Chidambaram
Leopold Talirz
Maciej Haranczyk
Kyriakos C. Stylianou
Berend Smit
author_sort Seyed Mohamad Moosavi
title Capturing chemical intuition in synthesis of metal-organic frameworks
title_short Capturing chemical intuition in synthesis of metal-organic frameworks
title_full Capturing chemical intuition in synthesis of metal-organic frameworks
title_fullStr Capturing chemical intuition in synthesis of metal-organic frameworks
title_full_unstemmed Capturing chemical intuition in synthesis of metal-organic frameworks
title_sort capturing chemical intuition in synthesis of metal-organic frameworks
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/52373b3681854fd292ba1296fab6d35b
work_keys_str_mv AT seyedmohamadmoosavi capturingchemicalintuitioninsynthesisofmetalorganicframeworks
AT arunrajchidambaram capturingchemicalintuitioninsynthesisofmetalorganicframeworks
AT leopoldtalirz capturingchemicalintuitioninsynthesisofmetalorganicframeworks
AT maciejharanczyk capturingchemicalintuitioninsynthesisofmetalorganicframeworks
AT kyriakoscstylianou capturingchemicalintuitioninsynthesisofmetalorganicframeworks
AT berendsmit capturingchemicalintuitioninsynthesisofmetalorganicframeworks
_version_ 1718382081987313664