Capturing chemical intuition in synthesis of metal-organic frameworks
Synthetic chemists develop a "chemical intuition" over years of experience in the lab. Here the authors combine machine learning of (partially) failed experiments with robotic synthesis to capture this intuition used in searching for the optimal synthesis conditions of metal-organic framew...
Guardado en:
Autores principales: | Seyed Mohamad Moosavi, Arunraj Chidambaram, Leopold Talirz, Maciej Haranczyk, Kyriakos C. Stylianou, Berend Smit |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/52373b3681854fd292ba1296fab6d35b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Understanding the diversity of the metal-organic framework ecosystem
por: Seyed Mohamad Moosavi, et al.
Publicado: (2020) -
Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks
por: Aditi S. Krishnapriyan, et al.
Publicado: (2021) -
Metal–organic framework with optimally selective xenon adsorption and separation
por: Debasis Banerjee, et al.
Publicado: (2016) -
Nucleobase pairing and photodimerization in a biologically derived metal-organic framework nanoreactor
por: Samantha L. Anderson, et al.
Publicado: (2019) -
Minimalism and Speakers' Intuitions
por: MATÍAS GARIAZZO
Publicado: (2011)