A potential regulatory role for intronic microRNA-338-3p for its host gene encoding apoptosis-associated tyrosine kinase.

MicroRNAs (miRNAs) are important gene regulators that are abundantly expressed in both the developing and adult mammalian brain. These non-coding gene transcripts are involved in post-transcriptional regulatory processes by binding to specific target mRNAs. Approximately one third of known miRNA gen...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aron Kos, Nikkie F M Olde Loohuis, Martha L Wieczorek, Jeffrey C Glennon, Gerard J M Martens, Sharon M Kolk, Armaz Aschrafi
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/52404595531a44589c01eb31ff1f0188
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:MicroRNAs (miRNAs) are important gene regulators that are abundantly expressed in both the developing and adult mammalian brain. These non-coding gene transcripts are involved in post-transcriptional regulatory processes by binding to specific target mRNAs. Approximately one third of known miRNA genes are located within intronic regions of protein coding and non-coding regions, and previous studies have suggested a role for intronic miRNAs as negative feedback regulators of their host genes. In the present study, we monitored the dynamic gene expression changes of the intronic miR-338-3p and miR-338-5p and their host gene Apoptosis-associated Tyrosine Kinase (AATK) during the maturation of rat hippocampal neurons. This revealed an uncorrelated expression pattern of mature miR-338 strands with their host gene. Sequence analysis of the 3' untranslated region (UTR) of rat AATK mRNA revealed the presence of two putative binding sites for miR-338-3p. Thus, miR-338-3p may have the capacity to modulate AATK mRNA levels in neurons. Transfection of miR-338-3p mimics into rat B35 neuroblastoma cells resulted in a significant decrease of AATK mRNA levels, while the transfection of synthetic miR-338-5p mimics did not alter AATK levels. Our results point to a possible molecular mechanism by which miR-338-3p participates in the regulation of its host gene by modulating the levels of AATK mRNA, a kinase which plays a role during differentiation, apoptosis and possibly in neuronal degeneration.