Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach

Using the fixed point method, we prove the generalized Hyers-Ulam stability of the quadratic functional equation f(2x+y)=4f(x)+f(y)+f(x+y)−f(x−y) in Banach spaces.

Guardado en:
Detalles Bibliográficos
Autor principal: Choonkil Park
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2008
Materias:
Acceso en línea:https://doaj.org/article/524104ebb2de45ea8048865931a3ec41
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:524104ebb2de45ea8048865931a3ec41
record_format dspace
spelling oai:doaj.org-article:524104ebb2de45ea8048865931a3ec412021-12-02T10:59:26ZGeneralized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach10.1155/2008/4937511687-18201687-1812https://doaj.org/article/524104ebb2de45ea8048865931a3ec412008-03-01T00:00:00Zhttp://dx.doi.org/10.1155/2008/493751https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812Using the fixed point method, we prove the generalized Hyers-Ulam stability of the quadratic functional equation f(2x+y)=4f(x)+f(y)+f(x+y)−f(x−y) in Banach spaces.Choonkil ParkSpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2008 (2008)
institution DOAJ
collection DOAJ
language EN
topic Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
spellingShingle Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
Choonkil Park
Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach
description Using the fixed point method, we prove the generalized Hyers-Ulam stability of the quadratic functional equation f(2x+y)=4f(x)+f(y)+f(x+y)−f(x−y) in Banach spaces.
format article
author Choonkil Park
author_facet Choonkil Park
author_sort Choonkil Park
title Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach
title_short Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach
title_full Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach
title_fullStr Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach
title_full_unstemmed Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach
title_sort generalized hyers-ulam stability of quadratic functional equations: a fixed point approach
publisher SpringerOpen
publishDate 2008
url https://doaj.org/article/524104ebb2de45ea8048865931a3ec41
work_keys_str_mv AT choonkilpark generalizedhyersulamstabilityofquadraticfunctionalequationsafixedpointapproach
_version_ 1718396352780566528