Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach
Using the fixed point method, we prove the generalized Hyers-Ulam stability of the quadratic functional equation f(2x+y)=4f(x)+f(y)+f(x+y)−f(x−y) in Banach spaces.
Guardado en:
Autor principal: | Choonkil Park |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2008
|
Materias: | |
Acceso en línea: | https://doaj.org/article/524104ebb2de45ea8048865931a3ec41 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Retraction Note: Fixed point theorems for solutions of the stationary Schrödinger equation on cones
por: Gaixian Xue, et al.
Publicado: (2020) -
Some Generalizations of Fixed Point Theorems in Cone Metric Spaces
por: J. O. Olaleru
Publicado: (2009) -
Retraction Note: Sharp geometrical properties of a-rarefied sets via fixed point index for the Schrödinger operator equations
por: Zhiqiang Li, et al.
Publicado: (2020) -
Epsilon Nielsen fixed point theory
por: Brown Robert F
Publicado: (2006) -
Fixed point indices and manifolds with collars
por: Daniel Henry Gottlieb, et al.
Publicado: (2006)