A New Transferable Fault Diagnosis Approach of Rotating Machinery Based on Deep Autoencoder and Dominant Features Selection under Different Operating Conditions
In the actual industrial scenarios, most existing fault diagnosis approaches are faced with two challenges, insufficient labeled training data and distribution divergences between training and testing datasets. For the above issues, a new transferable fault diagnosis approach of rotating machinery b...
Guardado en:
Autores principales: | Fei Dong, Xiao Yu, Xinguo Shi, Ke Liu, Zhaoli Wu, Wanli Yu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/524f7352e53946aa84a70ce2a4d699ab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network.
por: Jing Yan, et al.
Publicado: (2021) -
Research on vibration monitoring and fault diagnosis of rotating machinery based on internet of things technology
por: Zhang Xiaoran, et al.
Publicado: (2021) -
A Simultaneous Fault Diagnosis Method Based on Cohesion Evaluation and Improved BP-MLL for Rotating Machinery
por: Yixuan Zhang, et al.
Publicado: (2021) -
Application of multi-layer denoising based on ensemble empirical mode decomposition in extraction of fault feature of rotating machinery.
por: Kangping Gao, et al.
Publicado: (2021) - International journal of rotating machinery