An Efficient Network Classification Based on Various-Widths Clustering and Semi-Supervised Stacking
Network traffic classification is basic tool for internet service providers, various government and private organisations to carry out investigation on network activities such as Intrusion Detection Systems (IDS), security monitoring, lawful interception and Quality of Service (QoS). Recent network...
Guardado en:
Autores principales: | Abdulmohsen Almalawi, Adil Fahad |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5254fb8113e145e7ba37f8d22cfb04b3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Semi-Supervised Training for Positioning of Welding Seams
por: Wenbin Zhang, et al.
Publicado: (2021) -
Supervised Classification Problems–Taxonomy of Dimensions and Notation for Problems Identification
por: Ireneusz Czarnowski, et al.
Publicado: (2021) -
ℓ<sub>1</sub>-norm based safe semi-supervised learning
por: Haitao Gan, et al.
Publicado: (2021) -
Evaluation of semi-supervised learning using sparse labeling to segment cell nuclei
por: Bruch Roman, et al.
Publicado: (2020) -
Assembly Quality Detection Based on Class-Imbalanced Semi-Supervised Learning
por: Zichen Lu, et al.
Publicado: (2021)