An Efficient Network Classification Based on Various-Widths Clustering and Semi-Supervised Stacking
Network traffic classification is basic tool for internet service providers, various government and private organisations to carry out investigation on network activities such as Intrusion Detection Systems (IDS), security monitoring, lawful interception and Quality of Service (QoS). Recent network...
Enregistré dans:
Auteurs principaux: | Abdulmohsen Almalawi, Adil Fahad |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5254fb8113e145e7ba37f8d22cfb04b3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Semi-Supervised Training for Positioning of Welding Seams
par: Wenbin Zhang, et autres
Publié: (2021) -
Supervised Classification Problems–Taxonomy of Dimensions and Notation for Problems Identification
par: Ireneusz Czarnowski, et autres
Publié: (2021) -
ℓ<sub>1</sub>-norm based safe semi-supervised learning
par: Haitao Gan, et autres
Publié: (2021) -
Evaluation of semi-supervised learning using sparse labeling to segment cell nuclei
par: Bruch Roman, et autres
Publié: (2020) -
Assembly Quality Detection Based on Class-Imbalanced Semi-Supervised Learning
par: Zichen Lu, et autres
Publié: (2021)