Global Existence of Solution for the Fisher Equation via Faedo–Galerkin’s Method
In this study, we consider the Fisher equation in bounded domains. By Faedo–Galerkin’s method and with a homogeneous Dirichlet conditions, the existence of a global solution is proved.
Enregistré dans:
Auteurs principaux: | Ahmed Hamrouni, Abdelbaki Choucha, Asma Alharbi, Sahar Ahmed Idris |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/526527f5258f45be8d9bf2e980b649a2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Faedo-Galerkin approximation of mild solutions of fractional functional differential equations
par: Sousa J. Vanterler da C., et autres
Publié: (2021) -
Interpolating Stabilized Element Free Galerkin Method for Neutral Delay Fractional Damped Diffusion-Wave Equation
par: Mostafa Abbaszadeh, et autres
Publié: (2021) -
Global Existence and Blow-Up for the Classical Solutions of the Long-Short Wave Equations with Viscosity
par: Jincheng Shi, et autres
Publié: (2021) -
Existence of Solutions for Superlinear Second-Order System with Noninstantaneous Impulses
par: Yucheng Bu
Publié: (2021) -
Existence, Uniqueness, and Stability Solutions of Nonlinear System of Integral Equations
par: Rizgar Issa Hasan
Publié: (2020)