Global Existence of Solution for the Fisher Equation via Faedo–Galerkin’s Method
In this study, we consider the Fisher equation in bounded domains. By Faedo–Galerkin’s method and with a homogeneous Dirichlet conditions, the existence of a global solution is proved.
Guardado en:
Autores principales: | Ahmed Hamrouni, Abdelbaki Choucha, Asma Alharbi, Sahar Ahmed Idris |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/526527f5258f45be8d9bf2e980b649a2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Faedo-Galerkin approximation of mild solutions of fractional functional differential equations
por: Sousa J. Vanterler da C., et al.
Publicado: (2021) -
Interpolating Stabilized Element Free Galerkin Method for Neutral Delay Fractional Damped Diffusion-Wave Equation
por: Mostafa Abbaszadeh, et al.
Publicado: (2021) -
Global Existence and Blow-Up for the Classical Solutions of the Long-Short Wave Equations with Viscosity
por: Jincheng Shi, et al.
Publicado: (2021) -
Existence of Solutions for Superlinear Second-Order System with Noninstantaneous Impulses
por: Yucheng Bu
Publicado: (2021) -
Existence, Uniqueness, and Stability Solutions of Nonlinear System of Integral Equations
por: Rizgar Issa Hasan
Publicado: (2020)