Leveraging high-throughput screening data, deep neural networks, and conditional generative adversarial networks to advance predictive toxicology.
There are currently 85,000 chemicals registered with the Environmental Protection Agency (EPA) under the Toxic Substances Control Act, but only a small fraction have measured toxicological data. To address this gap, high-throughput screening (HTS) and computational methods are vital. As part of one...
Guardado en:
Autores principales: | Adrian J Green, Martin J Mohlenkamp, Jhuma Das, Meenal Chaudhari, Lisa Truong, Robyn L Tanguay, David M Reif |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5275e5c7bd414dfaa9a5ebbc012a0e38 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
Adversarial Hiding Deception Strategy and Network Optimization Method for Heterogeneous Network Defense
por: Chen Wang, et al.
Publicado: (2021) -
Quantum generative adversarial networks with multiple superconducting qubits
por: Kaixuan Huang, et al.
Publicado: (2021) -
Reconstructing missing complex networks against adversarial interventions
por: Yuankun Xue, et al.
Publicado: (2019) -
Hyperspectral Target Detection with an Auxiliary Generative Adversarial Network
por: Yanlong Gao, et al.
Publicado: (2021)