Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals

Inertial sensors are widely used in the field of human activity recognition (HAR), since this source of information is the most informative time series among non-visual datasets. HAR researchers are actively exploring other approaches and different sources of signals to improve the performance of HA...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mahsa Sadat Afzali Arani, Diego Elias Costa, Emad Shihab
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/52985a7a19c74919903522baac9f6dfa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:52985a7a19c74919903522baac9f6dfa
record_format dspace
spelling oai:doaj.org-article:52985a7a19c74919903522baac9f6dfa2021-11-11T19:02:22ZHuman Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals10.3390/s212169971424-8220https://doaj.org/article/52985a7a19c74919903522baac9f6dfa2021-10-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/21/6997https://doaj.org/toc/1424-8220Inertial sensors are widely used in the field of human activity recognition (HAR), since this source of information is the most informative time series among non-visual datasets. HAR researchers are actively exploring other approaches and different sources of signals to improve the performance of HAR systems. In this study, we investigate the impact of combining bio-signals with a dataset acquired from inertial sensors on recognizing human daily activities. To achieve this aim, we used the PPG-DaLiA dataset consisting of 3D-accelerometer (3D-ACC), electrocardiogram (ECG), photoplethysmogram (PPG) signals acquired from 15 individuals while performing daily activities. We extracted hand-crafted time and frequency domain features, then, we applied a correlation-based feature selection approach to reduce the feature-set dimensionality. After introducing early fusion scenarios, we trained and tested random forest models with subject-dependent and subject-independent setups. Our results indicate that combining features extracted from the 3D-ACC signal with the ECG signal improves the classifier’s performance F1-scores by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.72</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.00</mn><mo>%</mo></mrow></semantics></math></inline-formula> (from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>94.07</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>96.80</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>83.16</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>86.17</mn><mo>%</mo></mrow></semantics></math></inline-formula>) for subject-dependent and subject-independent approaches, respectively.Mahsa Sadat Afzali AraniDiego Elias CostaEmad ShihabMDPI AGarticlehuman activity recognition (HAR)early fusion3D-accelerometer (3D-ACC)electrocardiogram (ECG)photoplethysmogram (PPG)Chemical technologyTP1-1185ENSensors, Vol 21, Iss 6997, p 6997 (2021)
institution DOAJ
collection DOAJ
language EN
topic human activity recognition (HAR)
early fusion
3D-accelerometer (3D-ACC)
electrocardiogram (ECG)
photoplethysmogram (PPG)
Chemical technology
TP1-1185
spellingShingle human activity recognition (HAR)
early fusion
3D-accelerometer (3D-ACC)
electrocardiogram (ECG)
photoplethysmogram (PPG)
Chemical technology
TP1-1185
Mahsa Sadat Afzali Arani
Diego Elias Costa
Emad Shihab
Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals
description Inertial sensors are widely used in the field of human activity recognition (HAR), since this source of information is the most informative time series among non-visual datasets. HAR researchers are actively exploring other approaches and different sources of signals to improve the performance of HAR systems. In this study, we investigate the impact of combining bio-signals with a dataset acquired from inertial sensors on recognizing human daily activities. To achieve this aim, we used the PPG-DaLiA dataset consisting of 3D-accelerometer (3D-ACC), electrocardiogram (ECG), photoplethysmogram (PPG) signals acquired from 15 individuals while performing daily activities. We extracted hand-crafted time and frequency domain features, then, we applied a correlation-based feature selection approach to reduce the feature-set dimensionality. After introducing early fusion scenarios, we trained and tested random forest models with subject-dependent and subject-independent setups. Our results indicate that combining features extracted from the 3D-ACC signal with the ECG signal improves the classifier’s performance F1-scores by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.72</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.00</mn><mo>%</mo></mrow></semantics></math></inline-formula> (from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>94.07</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>96.80</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>83.16</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>86.17</mn><mo>%</mo></mrow></semantics></math></inline-formula>) for subject-dependent and subject-independent approaches, respectively.
format article
author Mahsa Sadat Afzali Arani
Diego Elias Costa
Emad Shihab
author_facet Mahsa Sadat Afzali Arani
Diego Elias Costa
Emad Shihab
author_sort Mahsa Sadat Afzali Arani
title Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals
title_short Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals
title_full Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals
title_fullStr Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals
title_full_unstemmed Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals
title_sort human activity recognition: a comparative study to assess the contribution level of accelerometer, ecg, and ppg signals
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/52985a7a19c74919903522baac9f6dfa
work_keys_str_mv AT mahsasadatafzaliarani humanactivityrecognitionacomparativestudytoassessthecontributionlevelofaccelerometerecgandppgsignals
AT diegoeliascosta humanactivityrecognitionacomparativestudytoassessthecontributionlevelofaccelerometerecgandppgsignals
AT emadshihab humanactivityrecognitionacomparativestudytoassessthecontributionlevelofaccelerometerecgandppgsignals
_version_ 1718431645548150784