Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals
Inertial sensors are widely used in the field of human activity recognition (HAR), since this source of information is the most informative time series among non-visual datasets. HAR researchers are actively exploring other approaches and different sources of signals to improve the performance of HA...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/52985a7a19c74919903522baac9f6dfa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:52985a7a19c74919903522baac9f6dfa |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:52985a7a19c74919903522baac9f6dfa2021-11-11T19:02:22ZHuman Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals10.3390/s212169971424-8220https://doaj.org/article/52985a7a19c74919903522baac9f6dfa2021-10-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/21/6997https://doaj.org/toc/1424-8220Inertial sensors are widely used in the field of human activity recognition (HAR), since this source of information is the most informative time series among non-visual datasets. HAR researchers are actively exploring other approaches and different sources of signals to improve the performance of HAR systems. In this study, we investigate the impact of combining bio-signals with a dataset acquired from inertial sensors on recognizing human daily activities. To achieve this aim, we used the PPG-DaLiA dataset consisting of 3D-accelerometer (3D-ACC), electrocardiogram (ECG), photoplethysmogram (PPG) signals acquired from 15 individuals while performing daily activities. We extracted hand-crafted time and frequency domain features, then, we applied a correlation-based feature selection approach to reduce the feature-set dimensionality. After introducing early fusion scenarios, we trained and tested random forest models with subject-dependent and subject-independent setups. Our results indicate that combining features extracted from the 3D-ACC signal with the ECG signal improves the classifier’s performance F1-scores by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.72</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.00</mn><mo>%</mo></mrow></semantics></math></inline-formula> (from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>94.07</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>96.80</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>83.16</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>86.17</mn><mo>%</mo></mrow></semantics></math></inline-formula>) for subject-dependent and subject-independent approaches, respectively.Mahsa Sadat Afzali AraniDiego Elias CostaEmad ShihabMDPI AGarticlehuman activity recognition (HAR)early fusion3D-accelerometer (3D-ACC)electrocardiogram (ECG)photoplethysmogram (PPG)Chemical technologyTP1-1185ENSensors, Vol 21, Iss 6997, p 6997 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
human activity recognition (HAR) early fusion 3D-accelerometer (3D-ACC) electrocardiogram (ECG) photoplethysmogram (PPG) Chemical technology TP1-1185 |
spellingShingle |
human activity recognition (HAR) early fusion 3D-accelerometer (3D-ACC) electrocardiogram (ECG) photoplethysmogram (PPG) Chemical technology TP1-1185 Mahsa Sadat Afzali Arani Diego Elias Costa Emad Shihab Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals |
description |
Inertial sensors are widely used in the field of human activity recognition (HAR), since this source of information is the most informative time series among non-visual datasets. HAR researchers are actively exploring other approaches and different sources of signals to improve the performance of HAR systems. In this study, we investigate the impact of combining bio-signals with a dataset acquired from inertial sensors on recognizing human daily activities. To achieve this aim, we used the PPG-DaLiA dataset consisting of 3D-accelerometer (3D-ACC), electrocardiogram (ECG), photoplethysmogram (PPG) signals acquired from 15 individuals while performing daily activities. We extracted hand-crafted time and frequency domain features, then, we applied a correlation-based feature selection approach to reduce the feature-set dimensionality. After introducing early fusion scenarios, we trained and tested random forest models with subject-dependent and subject-independent setups. Our results indicate that combining features extracted from the 3D-ACC signal with the ECG signal improves the classifier’s performance F1-scores by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.72</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.00</mn><mo>%</mo></mrow></semantics></math></inline-formula> (from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>94.07</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>96.80</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>83.16</mn><mo>%</mo></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>86.17</mn><mo>%</mo></mrow></semantics></math></inline-formula>) for subject-dependent and subject-independent approaches, respectively. |
format |
article |
author |
Mahsa Sadat Afzali Arani Diego Elias Costa Emad Shihab |
author_facet |
Mahsa Sadat Afzali Arani Diego Elias Costa Emad Shihab |
author_sort |
Mahsa Sadat Afzali Arani |
title |
Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals |
title_short |
Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals |
title_full |
Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals |
title_fullStr |
Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals |
title_full_unstemmed |
Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals |
title_sort |
human activity recognition: a comparative study to assess the contribution level of accelerometer, ecg, and ppg signals |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/52985a7a19c74919903522baac9f6dfa |
work_keys_str_mv |
AT mahsasadatafzaliarani humanactivityrecognitionacomparativestudytoassessthecontributionlevelofaccelerometerecgandppgsignals AT diegoeliascosta humanactivityrecognitionacomparativestudytoassessthecontributionlevelofaccelerometerecgandppgsignals AT emadshihab humanactivityrecognitionacomparativestudytoassessthecontributionlevelofaccelerometerecgandppgsignals |
_version_ |
1718431645548150784 |