Human Activity Recognition: A Comparative Study to Assess the Contribution Level of Accelerometer, ECG, and PPG Signals
Inertial sensors are widely used in the field of human activity recognition (HAR), since this source of information is the most informative time series among non-visual datasets. HAR researchers are actively exploring other approaches and different sources of signals to improve the performance of HA...
Guardado en:
Autores principales: | Mahsa Sadat Afzali Arani, Diego Elias Costa, Emad Shihab |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/52985a7a19c74919903522baac9f6dfa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Simulation Recording of an ECG, PCG, and PPG for Feature Extractions
por: Noor Kamal Al-Qazzaz, et al.
Publicado: (2017) -
Estimating Resting HRV during fMRI: A Comparison between Laboratory and Scanner Environment
por: Andy Schumann, et al.
Publicado: (2021) -
An Automated System for ECG Arrhythmia Detection Using Machine Learning Techniques
por: Mohamed Sraitih, et al.
Publicado: (2021) -
Key Feature Selection and Model Analysis for Blood Pressure Estimation From Electrocardiogram, Ballistocardiogram and Photoplethysmogram
por: Yandong Zhang, et al.
Publicado: (2021) -
Evaluation of HRV estimation algorithms from PPG data using neural networks
por: Wittenberg Th., et al.
Publicado: (2020)