Sulfite removal from flue-gas desulfurization residues of coal-fired power plants: Oxidation experiments and kinetic parameters estimation

Semi-dry flue-gas desulfurization (FGD) processes abate 99% of atmospheric emissions of sulfur dioxide from coal-fired power plants at the expense of producing daily tones of solid FGD residues containing sulfites, sulfates, carbonates and hydroxides of calcium and magnesium, besides fly-ashes. In t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Igor Nunes Rodrigues, José Luiz de Medeiros, Ofélia de Queiroz F. Araújo
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
FGD
Acceso en línea:https://doaj.org/article/529a1e84c70d419c89cb0fdaab20b822
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Semi-dry flue-gas desulfurization (FGD) processes abate 99% of atmospheric emissions of sulfur dioxide from coal-fired power plants at the expense of producing daily tones of solid FGD residues containing sulfites, sulfates, carbonates and hydroxides of calcium and magnesium, besides fly-ashes. In this work, a fluidized-bed reactor pilot plant was used for experiments of dry-oxidation of FGD residues aiming at converting sulfites into sulfates in order to upgrade such residues for utilization as raw material to the cement industry. A two-dimensional design of experiments on the plane of feed air temperature and reactor time-on-stream was conducted in the pilot plant generating sulfite conversion data and transient reactor temperature profiles. These data were used for estimating the first-order kinetic parameters of sulfite conversion via non-linear regression following the Maximum Likelihood Principle. The optimized Arrhenius factor and Arrhenius activation energy obtained via the Nelder–Mead Flexible Simplex method were, respectively, 0.001 mol/kg.s.bar and 14146.5 J/mol. This kinetic model allows designing large-scale plants for treatment of semi-dry FGD residues in order to beneficiate it for utilization in the cement industry, avoiding the disposal and environmental costs of landfilling such residues.