Near-infrared quantum dots for HER2 localization and imaging of cancer cells
Sarwat B Rizvi,1 Sepideh Rouhi,1 Shohei Taniguchi,2 Shi Yu Yang,1 Mark Green,2 Mo Keshtgar,1,3 Alexander M Seifalian1,3 1UCL Centre for Nanotechnology and Regenerative Medicine, University College London, 2Department of Physics, King's College London, 3Royal Free London NHS Foundation Trust...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/52a48702e73f4219a09520aaf48a1b49 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:52a48702e73f4219a09520aaf48a1b49 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:52a48702e73f4219a09520aaf48a1b492021-12-02T02:14:38ZNear-infrared quantum dots for HER2 localization and imaging of cancer cells1178-2013https://doaj.org/article/52a48702e73f4219a09520aaf48a1b492014-03-01T00:00:00Zhttp://www.dovepress.com/near-infrared-quantum-dots-for-her2-localization-and-imaging-of-cancer-a16078https://doaj.org/toc/1178-2013 Sarwat B Rizvi,1 Sepideh Rouhi,1 Shohei Taniguchi,2 Shi Yu Yang,1 Mark Green,2 Mo Keshtgar,1,3 Alexander M Seifalian1,3 1UCL Centre for Nanotechnology and Regenerative Medicine, University College London, 2Department of Physics, King's College London, 3Royal Free London NHS Foundation Trust Hospital, London, UK Background: Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu) is overexpressed in 25%–30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Methods: Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing), and MCF7 (HER2-underexpressing). Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. Results: In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 µg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells. Conclusion: Near-infrared-emitting quantum dot bioconjugates can be used for rapid localization of HER2 receptors and can potentially be used for targeted therapy as well as image-guided surgery. Keywords: anti-HER2 antibody, HER2 localization, quantum dots, in vitro imaging, nanotechnology, cancerRizvi SBRouhi STaniguchi SYang SYGreen MKeshtgar MSeifalian AMDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2014, Iss Issue 1, Pp 1323-1337 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Rizvi SB Rouhi S Taniguchi S Yang SY Green M Keshtgar M Seifalian AM Near-infrared quantum dots for HER2 localization and imaging of cancer cells |
description |
Sarwat B Rizvi,1 Sepideh Rouhi,1 Shohei Taniguchi,2 Shi Yu Yang,1 Mark Green,2 Mo Keshtgar,1,3 Alexander M Seifalian1,3 1UCL Centre for Nanotechnology and Regenerative Medicine, University College London, 2Department of Physics, King's College London, 3Royal Free London NHS Foundation Trust Hospital, London, UK Background: Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu) is overexpressed in 25%–30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Methods: Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing), and MCF7 (HER2-underexpressing). Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. Results: In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 µg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells. Conclusion: Near-infrared-emitting quantum dot bioconjugates can be used for rapid localization of HER2 receptors and can potentially be used for targeted therapy as well as image-guided surgery. Keywords: anti-HER2 antibody, HER2 localization, quantum dots, in vitro imaging, nanotechnology, cancer |
format |
article |
author |
Rizvi SB Rouhi S Taniguchi S Yang SY Green M Keshtgar M Seifalian AM |
author_facet |
Rizvi SB Rouhi S Taniguchi S Yang SY Green M Keshtgar M Seifalian AM |
author_sort |
Rizvi SB |
title |
Near-infrared quantum dots for HER2 localization and imaging of cancer cells |
title_short |
Near-infrared quantum dots for HER2 localization and imaging of cancer cells |
title_full |
Near-infrared quantum dots for HER2 localization and imaging of cancer cells |
title_fullStr |
Near-infrared quantum dots for HER2 localization and imaging of cancer cells |
title_full_unstemmed |
Near-infrared quantum dots for HER2 localization and imaging of cancer cells |
title_sort |
near-infrared quantum dots for her2 localization and imaging of cancer cells |
publisher |
Dove Medical Press |
publishDate |
2014 |
url |
https://doaj.org/article/52a48702e73f4219a09520aaf48a1b49 |
work_keys_str_mv |
AT rizvisb nearinfraredquantumdotsforher2localizationandimagingofcancercells AT rouhis nearinfraredquantumdotsforher2localizationandimagingofcancercells AT taniguchis nearinfraredquantumdotsforher2localizationandimagingofcancercells AT yangsy nearinfraredquantumdotsforher2localizationandimagingofcancercells AT greenm nearinfraredquantumdotsforher2localizationandimagingofcancercells AT keshtgarm nearinfraredquantumdotsforher2localizationandimagingofcancercells AT seifalianam nearinfraredquantumdotsforher2localizationandimagingofcancercells |
_version_ |
1718402594460663808 |