The <i>k</i>-Metric Dimension of a Unicyclic Graph
Given a connected graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>(</mo><mi>G</mi>&...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/52b519f0fcfa4350a196197c6637ae8f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:52b519f0fcfa4350a196197c6637ae8f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:52b519f0fcfa4350a196197c6637ae8f2021-11-11T18:19:36ZThe <i>k</i>-Metric Dimension of a Unicyclic Graph10.3390/math92127892227-7390https://doaj.org/article/52b519f0fcfa4350a196197c6637ae8f2021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2789https://doaj.org/toc/2227-7390Given a connected graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula>, a set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> is said to be a <i>k</i>-metric generator for <i>G</i> if any pair of different vertices in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> is distinguished by at least <i>k</i> elements of <i>S</i>. A metric generator of minimum cardinality among all <i>k</i>-metric generators is called a <i>k</i>-metric basis and its cardinality is the <i>k</i>-metric dimension of <i>G</i>. We initially present a linear programming problem that describes the problem of finding the <i>k</i>-metric dimension and a <i>k</i>-metric basis of a graph <i>G</i>. Then we conducted a study on the k-metric dimension of a unicyclic graph.Alejandro Estrada-MorenoMDPI AGarticleunicyclic graph<i>k</i>-metric generator<i>k</i>-metric dimension<i>k</i>-metric dimensional graphlinear programming problemMathematicsQA1-939ENMathematics, Vol 9, Iss 2789, p 2789 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
unicyclic graph <i>k</i>-metric generator <i>k</i>-metric dimension <i>k</i>-metric dimensional graph linear programming problem Mathematics QA1-939 |
spellingShingle |
unicyclic graph <i>k</i>-metric generator <i>k</i>-metric dimension <i>k</i>-metric dimensional graph linear programming problem Mathematics QA1-939 Alejandro Estrada-Moreno The <i>k</i>-Metric Dimension of a Unicyclic Graph |
description |
Given a connected graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>,</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></mrow></semantics></math></inline-formula>, a set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> is said to be a <i>k</i>-metric generator for <i>G</i> if any pair of different vertices in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula> is distinguished by at least <i>k</i> elements of <i>S</i>. A metric generator of minimum cardinality among all <i>k</i>-metric generators is called a <i>k</i>-metric basis and its cardinality is the <i>k</i>-metric dimension of <i>G</i>. We initially present a linear programming problem that describes the problem of finding the <i>k</i>-metric dimension and a <i>k</i>-metric basis of a graph <i>G</i>. Then we conducted a study on the k-metric dimension of a unicyclic graph. |
format |
article |
author |
Alejandro Estrada-Moreno |
author_facet |
Alejandro Estrada-Moreno |
author_sort |
Alejandro Estrada-Moreno |
title |
The <i>k</i>-Metric Dimension of a Unicyclic Graph |
title_short |
The <i>k</i>-Metric Dimension of a Unicyclic Graph |
title_full |
The <i>k</i>-Metric Dimension of a Unicyclic Graph |
title_fullStr |
The <i>k</i>-Metric Dimension of a Unicyclic Graph |
title_full_unstemmed |
The <i>k</i>-Metric Dimension of a Unicyclic Graph |
title_sort |
<i>k</i>-metric dimension of a unicyclic graph |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/52b519f0fcfa4350a196197c6637ae8f |
work_keys_str_mv |
AT alejandroestradamoreno theikimetricdimensionofaunicyclicgraph AT alejandroestradamoreno ikimetricdimensionofaunicyclicgraph |
_version_ |
1718431883980701696 |