On the physical mechanisms underlying single molecule dynamics in simple liquids
Abstract Physical arguments and comparisons with published experimental data suggest that in simple liquids: (i) single-molecule-scale viscous forces are produced by temperature-dependent London dispersion forces, (ii) viscosity decay with increasing temperature reflects electron cloud compression a...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/52baabd88c80482d8f5ef4993f5c756f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Physical arguments and comparisons with published experimental data suggest that in simple liquids: (i) single-molecule-scale viscous forces are produced by temperature-dependent London dispersion forces, (ii) viscosity decay with increasing temperature reflects electron cloud compression and attendant suppression of electron screening, produced by increased nuclear agitation, and (iii) temperature-dependent self-diffusion is driven by a narrow band of phonon frequencies lying at the low-frequency end of the solid-state-like phonon spectrum. The results suggest that collision-induced electron cloud distortion plays a decisive role in single molecule dynamics: (i) electron cloud compression produces short-lived repulsive states and single molecule, self-diffusive hops, while (ii) shear-induced distortion generates viscosity and single-molecule-scale viscous drag. The results provide new insight into nonequilibrium molecular dynamics in nonpolar, nonmetallic liquids. |
---|