Predictive performance of international COVID-19 mortality forecasting models
Forecasts of COVID-19 mortality have been critical inputs into a range of policies, and decision-makers need information about their predictive performance. Here, the authors gather a panel of global epidemiological models and assess their predictive performance across time and space.
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/52bc9ab11980476da45be7562b888e3f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:52bc9ab11980476da45be7562b888e3f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:52bc9ab11980476da45be7562b888e3f2021-12-02T14:35:39ZPredictive performance of international COVID-19 mortality forecasting models10.1038/s41467-021-22457-w2041-1723https://doaj.org/article/52bc9ab11980476da45be7562b888e3f2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22457-whttps://doaj.org/toc/2041-1723Forecasts of COVID-19 mortality have been critical inputs into a range of policies, and decision-makers need information about their predictive performance. Here, the authors gather a panel of global epidemiological models and assess their predictive performance across time and space.Joseph FriedmanPatrick LiuChristopher E. TroegerAustin CarterRobert C. ReinerRyan M. BarberJames CollinsStephen S. LimDavid M. PigottTheo VosSimon I. HayChristopher J. L. MurrayEmmanuela GakidouNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Joseph Friedman Patrick Liu Christopher E. Troeger Austin Carter Robert C. Reiner Ryan M. Barber James Collins Stephen S. Lim David M. Pigott Theo Vos Simon I. Hay Christopher J. L. Murray Emmanuela Gakidou Predictive performance of international COVID-19 mortality forecasting models |
description |
Forecasts of COVID-19 mortality have been critical inputs into a range of policies, and decision-makers need information about their predictive performance. Here, the authors gather a panel of global epidemiological models and assess their predictive performance across time and space. |
format |
article |
author |
Joseph Friedman Patrick Liu Christopher E. Troeger Austin Carter Robert C. Reiner Ryan M. Barber James Collins Stephen S. Lim David M. Pigott Theo Vos Simon I. Hay Christopher J. L. Murray Emmanuela Gakidou |
author_facet |
Joseph Friedman Patrick Liu Christopher E. Troeger Austin Carter Robert C. Reiner Ryan M. Barber James Collins Stephen S. Lim David M. Pigott Theo Vos Simon I. Hay Christopher J. L. Murray Emmanuela Gakidou |
author_sort |
Joseph Friedman |
title |
Predictive performance of international COVID-19 mortality forecasting models |
title_short |
Predictive performance of international COVID-19 mortality forecasting models |
title_full |
Predictive performance of international COVID-19 mortality forecasting models |
title_fullStr |
Predictive performance of international COVID-19 mortality forecasting models |
title_full_unstemmed |
Predictive performance of international COVID-19 mortality forecasting models |
title_sort |
predictive performance of international covid-19 mortality forecasting models |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/52bc9ab11980476da45be7562b888e3f |
work_keys_str_mv |
AT josephfriedman predictiveperformanceofinternationalcovid19mortalityforecastingmodels AT patrickliu predictiveperformanceofinternationalcovid19mortalityforecastingmodels AT christopheretroeger predictiveperformanceofinternationalcovid19mortalityforecastingmodels AT austincarter predictiveperformanceofinternationalcovid19mortalityforecastingmodels AT robertcreiner predictiveperformanceofinternationalcovid19mortalityforecastingmodels AT ryanmbarber predictiveperformanceofinternationalcovid19mortalityforecastingmodels AT jamescollins predictiveperformanceofinternationalcovid19mortalityforecastingmodels AT stephenslim predictiveperformanceofinternationalcovid19mortalityforecastingmodels AT davidmpigott predictiveperformanceofinternationalcovid19mortalityforecastingmodels AT theovos predictiveperformanceofinternationalcovid19mortalityforecastingmodels AT simonihay predictiveperformanceofinternationalcovid19mortalityforecastingmodels AT christopherjlmurray predictiveperformanceofinternationalcovid19mortalityforecastingmodels AT emmanuelagakidou predictiveperformanceofinternationalcovid19mortalityforecastingmodels |
_version_ |
1718391070091378688 |