Predictive performance of international COVID-19 mortality forecasting models

Forecasts of COVID-19 mortality have been critical inputs into a range of policies, and decision-makers need information about their predictive performance. Here, the authors gather a panel of global epidemiological models and assess their predictive performance across time and space.

Guardado en:
Detalles Bibliográficos
Autores principales: Joseph Friedman, Patrick Liu, Christopher E. Troeger, Austin Carter, Robert C. Reiner, Ryan M. Barber, James Collins, Stephen S. Lim, David M. Pigott, Theo Vos, Simon I. Hay, Christopher J. L. Murray, Emmanuela Gakidou
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/52bc9ab11980476da45be7562b888e3f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:52bc9ab11980476da45be7562b888e3f
record_format dspace
spelling oai:doaj.org-article:52bc9ab11980476da45be7562b888e3f2021-12-02T14:35:39ZPredictive performance of international COVID-19 mortality forecasting models10.1038/s41467-021-22457-w2041-1723https://doaj.org/article/52bc9ab11980476da45be7562b888e3f2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22457-whttps://doaj.org/toc/2041-1723Forecasts of COVID-19 mortality have been critical inputs into a range of policies, and decision-makers need information about their predictive performance. Here, the authors gather a panel of global epidemiological models and assess their predictive performance across time and space.Joseph FriedmanPatrick LiuChristopher E. TroegerAustin CarterRobert C. ReinerRyan M. BarberJames CollinsStephen S. LimDavid M. PigottTheo VosSimon I. HayChristopher J. L. MurrayEmmanuela GakidouNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Joseph Friedman
Patrick Liu
Christopher E. Troeger
Austin Carter
Robert C. Reiner
Ryan M. Barber
James Collins
Stephen S. Lim
David M. Pigott
Theo Vos
Simon I. Hay
Christopher J. L. Murray
Emmanuela Gakidou
Predictive performance of international COVID-19 mortality forecasting models
description Forecasts of COVID-19 mortality have been critical inputs into a range of policies, and decision-makers need information about their predictive performance. Here, the authors gather a panel of global epidemiological models and assess their predictive performance across time and space.
format article
author Joseph Friedman
Patrick Liu
Christopher E. Troeger
Austin Carter
Robert C. Reiner
Ryan M. Barber
James Collins
Stephen S. Lim
David M. Pigott
Theo Vos
Simon I. Hay
Christopher J. L. Murray
Emmanuela Gakidou
author_facet Joseph Friedman
Patrick Liu
Christopher E. Troeger
Austin Carter
Robert C. Reiner
Ryan M. Barber
James Collins
Stephen S. Lim
David M. Pigott
Theo Vos
Simon I. Hay
Christopher J. L. Murray
Emmanuela Gakidou
author_sort Joseph Friedman
title Predictive performance of international COVID-19 mortality forecasting models
title_short Predictive performance of international COVID-19 mortality forecasting models
title_full Predictive performance of international COVID-19 mortality forecasting models
title_fullStr Predictive performance of international COVID-19 mortality forecasting models
title_full_unstemmed Predictive performance of international COVID-19 mortality forecasting models
title_sort predictive performance of international covid-19 mortality forecasting models
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/52bc9ab11980476da45be7562b888e3f
work_keys_str_mv AT josephfriedman predictiveperformanceofinternationalcovid19mortalityforecastingmodels
AT patrickliu predictiveperformanceofinternationalcovid19mortalityforecastingmodels
AT christopheretroeger predictiveperformanceofinternationalcovid19mortalityforecastingmodels
AT austincarter predictiveperformanceofinternationalcovid19mortalityforecastingmodels
AT robertcreiner predictiveperformanceofinternationalcovid19mortalityforecastingmodels
AT ryanmbarber predictiveperformanceofinternationalcovid19mortalityforecastingmodels
AT jamescollins predictiveperformanceofinternationalcovid19mortalityforecastingmodels
AT stephenslim predictiveperformanceofinternationalcovid19mortalityforecastingmodels
AT davidmpigott predictiveperformanceofinternationalcovid19mortalityforecastingmodels
AT theovos predictiveperformanceofinternationalcovid19mortalityforecastingmodels
AT simonihay predictiveperformanceofinternationalcovid19mortalityforecastingmodels
AT christopherjlmurray predictiveperformanceofinternationalcovid19mortalityforecastingmodels
AT emmanuelagakidou predictiveperformanceofinternationalcovid19mortalityforecastingmodels
_version_ 1718391070091378688