TIA1 is a gender-specific disease modifier of a mild mouse model of spinal muscular atrophy

Abstract Spinal muscular atrophy (SMA) is caused by deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. The nearly identical SMN2 cannot compensate for SMN1 loss due to exon 7 skipping. The allele C (C +/+) mouse recapitulates a mild SMA-like phenotype and offers an ideal system to monito...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Matthew D. Howell, Eric W. Ottesen, Natalia N. Singh, Rachel L. Anderson, Joonbae Seo, Senthilkumar Sivanesan, Elizabeth M. Whitley, Ravindra N. Singh
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/52d3ab15d6f44118a9db9e9a35596a5b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Spinal muscular atrophy (SMA) is caused by deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. The nearly identical SMN2 cannot compensate for SMN1 loss due to exon 7 skipping. The allele C (C +/+) mouse recapitulates a mild SMA-like phenotype and offers an ideal system to monitor the role of disease-modifying factors over a long time. T-cell-restricted intracellular antigen 1 (TIA1) regulates SMN exon 7 splicing. TIA1 is reported to be downregulated in obese patients, although it is not known if the effect is gender-specific. We show that female Tia1-knockout (Tia1 −/−) mice gain significant body weight (BW) during early postnatal development. We next examined the effect of Tia1 deletion in novel C +/+/Tia1 −/− mice. Underscoring the opposing effects of Tia1 deletion and low SMN level on BW gain, both C +/+ and C +/+/Tia1 −/− females showed similar BW gain trajectory at all time points during our study. We observed early tail necrosis in C +/+/Tia1 −/− females but not in males. We show enhanced impairment of male reproductive organ development and exacerbation of the C +/+/Tia1 −/− testis transcriptome. Our findings implicate a protein factor as a gender-specific modifier of a mild mouse model of SMA.