A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies

With the development of large scale single cell RNA-seq technology, population-scale scRNA-seq studies are emerging. Here, the authors develop BAMM-SC, a tool for clustering droplet-based scRNA-seq data from multiple individuals simultaneously.

Guardado en:
Detalles Bibliográficos
Autores principales: Zhe Sun, Li Chen, Hongyi Xin, Yale Jiang, Qianhui Huang, Anthony R. Cillo, Tracy Tabib, Jay K. Kolls, Tullia C. Bruno, Robert Lafyatis, Dario A. A. Vignali, Kong Chen, Ying Ding, Ming Hu, Wei Chen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/52d49e5908374e5ea58127ece365e62a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:With the development of large scale single cell RNA-seq technology, population-scale scRNA-seq studies are emerging. Here, the authors develop BAMM-SC, a tool for clustering droplet-based scRNA-seq data from multiple individuals simultaneously.