A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies
With the development of large scale single cell RNA-seq technology, population-scale scRNA-seq studies are emerging. Here, the authors develop BAMM-SC, a tool for clustering droplet-based scRNA-seq data from multiple individuals simultaneously.
Guardado en:
Autores principales: | Zhe Sun, Li Chen, Hongyi Xin, Yale Jiang, Qianhui Huang, Anthony R. Cillo, Tracy Tabib, Jay K. Kolls, Tullia C. Bruno, Robert Lafyatis, Dario A. A. Vignali, Kong Chen, Ying Ding, Ming Hu, Wei Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/52d49e5908374e5ea58127ece365e62a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Myofibroblast transcriptome indicates SFRP2hi fibroblast progenitors in systemic sclerosis skin
por: Tracy Tabib, et al.
Publicado: (2021) -
A Bayesian mixture model for the analysis of allelic expression in single cells
por: Kwangbom Choi, et al.
Publicado: (2019) -
B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma
por: Ayana T. Ruffin, et al.
Publicado: (2021) -
A mixture of delta-rules approximation to bayesian inference in change-point problems.
por: Robert C Wilson, et al.
Publicado: (2013) -
Many-body and temperature effects in two-dimensional quantum droplets in Bose–Bose mixtures
por: Abdelâali Boudjemâa
Publicado: (2021)