Model-Agnostic Post-Processing Based on Recursive Feedback for Medical Image Segmentation
In medical image segmentation, post-processing can effectively improve the performance of a segmentation model. Existing post-processing methods generally require additional training of a post-processing model using training data or designing a post-processing procedure based on a high level of doma...
Guardado en:
Autores principales: | Jaeho Kim, Seokho Kang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/52df5d1da8d14af6aeb0d7c13f3d273c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
AEDCN-Net: Accurate and Efficient Deep Convolutional Neural Network Model for Medical Image Segmentation
por: Bekhzod Olimov, et al.
Publicado: (2021) -
Global Context and Enhanced Feature Guided Residual Refinement Network for 3D Cardiovascular Image Segmentation
por: Jingjing Liu, et al.
Publicado: (2021) -
Health Vigilance for Medical Imaging Diagnostic Optimization: Automated segmentation of COVID-19 lung infection from CT images
por: Mohamed Chala, et al.
Publicado: (2021) -
Automated CNN-Based Tooth Segmentation in Cone-Beam CT for Dental Implant Planning
por: S. Lee, et al.
Publicado: (2020) -
A Dense Encoder–Decoder Network with Feedback Connections for Pan-Sharpening
por: Weisheng Li, et al.
Publicado: (2021)