Model-Agnostic Post-Processing Based on Recursive Feedback for Medical Image Segmentation
In medical image segmentation, post-processing can effectively improve the performance of a segmentation model. Existing post-processing methods generally require additional training of a post-processing model using training data or designing a post-processing procedure based on a high level of doma...
Enregistré dans:
Auteurs principaux: | Jaeho Kim, Seokho Kang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/52df5d1da8d14af6aeb0d7c13f3d273c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
AEDCN-Net: Accurate and Efficient Deep Convolutional Neural Network Model for Medical Image Segmentation
par: Bekhzod Olimov, et autres
Publié: (2021) -
Global Context and Enhanced Feature Guided Residual Refinement Network for 3D Cardiovascular Image Segmentation
par: Jingjing Liu, et autres
Publié: (2021) -
Health Vigilance for Medical Imaging Diagnostic Optimization: Automated segmentation of COVID-19 lung infection from CT images
par: Mohamed Chala, et autres
Publié: (2021) -
Automated CNN-Based Tooth Segmentation in Cone-Beam CT for Dental Implant Planning
par: S. Lee, et autres
Publié: (2020) -
A Dense Encoder–Decoder Network with Feedback Connections for Pan-Sharpening
par: Weisheng Li, et autres
Publié: (2021)