Self-Attention-Based Models for the Extraction of Molecular Interactions from Biological Texts
For any molecule, network, or process of interest, keeping up with new publications on these is becoming increasingly difficult. For many cellular processes, the amount molecules and their interactions that need to be considered can be very large. Automated mining of publications can support large-s...
Guardado en:
Autores principales: | Prashant Srivastava, Saptarshi Bej, Kristina Yordanova, Olaf Wolkenhauer |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/530bc149d682463b988566636474504f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application Of Machine Learning Methods To Compare Disciplines Content Using Text Data
por: Roman Kupriyanov, et al.
Publicado: (2021) -
PaperBLAST: Text Mining Papers for Information about Homologs
por: Morgan N. Price, et al.
Publicado: (2017) -
A Text Mining-Based Survey of Pre-Impressions of Medical Staff toward COVID-19 Vaccination in a Designated Medical Institution for Class II Infectious Diseases
por: Yoshiro Mori, et al.
Publicado: (2021) -
Computational Work with Very Large Text Collections
por: John Unsworth
Publicado: (2011) -
Grey Relational Classification of Consumers' Textual Evaluations in E-Commerce
por: Fidan,Hüseyin
Publicado: (2020)