Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR

Abstract Multiparametric Magnetic Resonance Imaging (MRI) can provide detailed information of the physical characteristics of rectum tumours. Several investigations suggest that volumetric analyses on anatomical and functional MRI contain clinically valuable information. However, manual delineation...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Stefano Trebeschi, Joost J. M. van Griethuysen, Doenja M. J. Lambregts, Max J. Lahaye, Chintan Parmar, Frans C. H. Bakers, Nicky H. G. M. Peters, Regina G. H. Beets-Tan, Hugo J. W. L. Aerts
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/530f2a985a074fb7bdfb89c6da9063f9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:530f2a985a074fb7bdfb89c6da9063f9
record_format dspace
spelling oai:doaj.org-article:530f2a985a074fb7bdfb89c6da9063f92021-12-02T12:30:53ZDeep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR10.1038/s41598-017-05728-92045-2322https://doaj.org/article/530f2a985a074fb7bdfb89c6da9063f92017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-05728-9https://doaj.org/toc/2045-2322Abstract Multiparametric Magnetic Resonance Imaging (MRI) can provide detailed information of the physical characteristics of rectum tumours. Several investigations suggest that volumetric analyses on anatomical and functional MRI contain clinically valuable information. However, manual delineation of tumours is a time consuming procedure, as it requires a high level of expertise. Here, we evaluate deep learning methods for automatic localization and segmentation of rectal cancers on multiparametric MR imaging. MRI scans (1.5T, T2-weighted, and DWI) of 140 patients with locally advanced rectal cancer were included in our analysis, equally divided between discovery and validation datasets. Two expert radiologists segmented each tumor. A convolutional neural network (CNN) was trained on the multiparametric MRIs of the discovery set to classify each voxel into tumour or non-tumour. On the independent validation dataset, the CNN showed high segmentation accuracy for reader1 (Dice Similarity Coefficient (DSC = 0.68) and reader2 (DSC = 0.70). The area under the curve (AUC) of the resulting probability maps was very high for both readers, AUC = 0.99 (SD = 0.05). Our results demonstrate that deep learning can perform accurate localization and segmentation of rectal cancer in MR imaging in the majority of patients. Deep learning technologies have the potential to improve the speed and accuracy of MRI-based rectum segmentations.Stefano TrebeschiJoost J. M. van GriethuysenDoenja M. J. LambregtsMax J. LahayeChintan ParmarFrans C. H. BakersNicky H. G. M. PetersRegina G. H. Beets-TanHugo J. W. L. AertsNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Stefano Trebeschi
Joost J. M. van Griethuysen
Doenja M. J. Lambregts
Max J. Lahaye
Chintan Parmar
Frans C. H. Bakers
Nicky H. G. M. Peters
Regina G. H. Beets-Tan
Hugo J. W. L. Aerts
Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
description Abstract Multiparametric Magnetic Resonance Imaging (MRI) can provide detailed information of the physical characteristics of rectum tumours. Several investigations suggest that volumetric analyses on anatomical and functional MRI contain clinically valuable information. However, manual delineation of tumours is a time consuming procedure, as it requires a high level of expertise. Here, we evaluate deep learning methods for automatic localization and segmentation of rectal cancers on multiparametric MR imaging. MRI scans (1.5T, T2-weighted, and DWI) of 140 patients with locally advanced rectal cancer were included in our analysis, equally divided between discovery and validation datasets. Two expert radiologists segmented each tumor. A convolutional neural network (CNN) was trained on the multiparametric MRIs of the discovery set to classify each voxel into tumour or non-tumour. On the independent validation dataset, the CNN showed high segmentation accuracy for reader1 (Dice Similarity Coefficient (DSC = 0.68) and reader2 (DSC = 0.70). The area under the curve (AUC) of the resulting probability maps was very high for both readers, AUC = 0.99 (SD = 0.05). Our results demonstrate that deep learning can perform accurate localization and segmentation of rectal cancer in MR imaging in the majority of patients. Deep learning technologies have the potential to improve the speed and accuracy of MRI-based rectum segmentations.
format article
author Stefano Trebeschi
Joost J. M. van Griethuysen
Doenja M. J. Lambregts
Max J. Lahaye
Chintan Parmar
Frans C. H. Bakers
Nicky H. G. M. Peters
Regina G. H. Beets-Tan
Hugo J. W. L. Aerts
author_facet Stefano Trebeschi
Joost J. M. van Griethuysen
Doenja M. J. Lambregts
Max J. Lahaye
Chintan Parmar
Frans C. H. Bakers
Nicky H. G. M. Peters
Regina G. H. Beets-Tan
Hugo J. W. L. Aerts
author_sort Stefano Trebeschi
title Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
title_short Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
title_full Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
title_fullStr Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
title_full_unstemmed Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
title_sort deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric mr
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/530f2a985a074fb7bdfb89c6da9063f9
work_keys_str_mv AT stefanotrebeschi deeplearningforfullyautomatedlocalizationandsegmentationofrectalcanceronmultiparametricmr
AT joostjmvangriethuysen deeplearningforfullyautomatedlocalizationandsegmentationofrectalcanceronmultiparametricmr
AT doenjamjlambregts deeplearningforfullyautomatedlocalizationandsegmentationofrectalcanceronmultiparametricmr
AT maxjlahaye deeplearningforfullyautomatedlocalizationandsegmentationofrectalcanceronmultiparametricmr
AT chintanparmar deeplearningforfullyautomatedlocalizationandsegmentationofrectalcanceronmultiparametricmr
AT franschbakers deeplearningforfullyautomatedlocalizationandsegmentationofrectalcanceronmultiparametricmr
AT nickyhgmpeters deeplearningforfullyautomatedlocalizationandsegmentationofrectalcanceronmultiparametricmr
AT reginaghbeetstan deeplearningforfullyautomatedlocalizationandsegmentationofrectalcanceronmultiparametricmr
AT hugojwlaerts deeplearningforfullyautomatedlocalizationandsegmentationofrectalcanceronmultiparametricmr
_version_ 1718394278268370944