Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
Abstract Multiparametric Magnetic Resonance Imaging (MRI) can provide detailed information of the physical characteristics of rectum tumours. Several investigations suggest that volumetric analyses on anatomical and functional MRI contain clinically valuable information. However, manual delineation...
Guardado en:
Autores principales: | Stefano Trebeschi, Joost J. M. van Griethuysen, Doenja M. J. Lambregts, Max J. Lahaye, Chintan Parmar, Frans C. H. Bakers, Nicky H. G. M. Peters, Regina G. H. Beets-Tan, Hugo J. W. L. Aerts |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/530f2a985a074fb7bdfb89c6da9063f9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
por: Stefano Trebeschi, et al.
Publicado: (2018) -
MRI-based clinical-radiomics model predicts tumor response before treatment in locally advanced rectal cancer
por: Andrea Delli Pizzi, et al.
Publicado: (2021) -
Differentiating malignant from benign salivary gland lesions: a multiparametric non-contrast MR imaging approach
por: Koji Takumi, et al.
Publicado: (2021) -
Application of multiparametric MR imaging to predict the diversification of renal function in miR29a-mediated diabetic nephropathy
por: Chia-Hao Su, et al.
Publicado: (2021) -
A Multiparametric MR-Based RadioFusionOmics Model with Robust Capabilities of Differentiating Glioblastoma Multiforme from Solitary Brain Metastasis
por: Jialiang Wu, et al.
Publicado: (2021)