Hidden Hypergraphs, Error-Correcting Codes, and Critical Learning in Hopfield Networks
In 1943, McCulloch and Pitts introduced a discrete recurrent neural network as a model for computation in brains. The work inspired breakthroughs such as the first computer design and the theory of finite automata. We focus on learning in Hopfield networks, a special case with symmetric weights and...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/530fe3130c4548da95e254bcc23a234c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:530fe3130c4548da95e254bcc23a234c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:530fe3130c4548da95e254bcc23a234c2021-11-25T17:30:09ZHidden Hypergraphs, Error-Correcting Codes, and Critical Learning in Hopfield Networks10.3390/e231114941099-4300https://doaj.org/article/530fe3130c4548da95e254bcc23a234c2021-11-01T00:00:00Zhttps://www.mdpi.com/1099-4300/23/11/1494https://doaj.org/toc/1099-4300In 1943, McCulloch and Pitts introduced a discrete recurrent neural network as a model for computation in brains. The work inspired breakthroughs such as the first computer design and the theory of finite automata. We focus on learning in Hopfield networks, a special case with symmetric weights and fixed-point attractor dynamics. Specifically, we explore minimum energy flow (MEF) as a scalable convex objective for determining network parameters. We catalog various properties of MEF, such as biological plausibility, and then compare to classical approaches in the theory of learning. Trained Hopfield networks can perform unsupervised clustering and define novel error-correcting coding schemes. They also efficiently find hidden structures (cliques) in graph theory. We extend this known connection from graphs to hypergraphs and discover <i>n</i>-node networks with robust storage of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>2</mn><mrow><mi mathvariant="sans-serif">Ω</mi><mo>(</mo><msup><mi>n</mi><mrow><mn>1</mn><mo>−</mo><mi>ϵ</mi></mrow></msup><mo>)</mo></mrow></msup></semantics></math></inline-formula> memories for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϵ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. In the case of graphs, we also determine a critical ratio of training samples at which networks generalize completely.Christopher HillarTenzin ChanRachel TaubmanDavid RolnickMDPI AGarticleHopfield networksclusteringerror-correcting codesexponential memoryhidden graphneuroscienceScienceQAstrophysicsQB460-466PhysicsQC1-999ENEntropy, Vol 23, Iss 1494, p 1494 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Hopfield networks clustering error-correcting codes exponential memory hidden graph neuroscience Science Q Astrophysics QB460-466 Physics QC1-999 |
spellingShingle |
Hopfield networks clustering error-correcting codes exponential memory hidden graph neuroscience Science Q Astrophysics QB460-466 Physics QC1-999 Christopher Hillar Tenzin Chan Rachel Taubman David Rolnick Hidden Hypergraphs, Error-Correcting Codes, and Critical Learning in Hopfield Networks |
description |
In 1943, McCulloch and Pitts introduced a discrete recurrent neural network as a model for computation in brains. The work inspired breakthroughs such as the first computer design and the theory of finite automata. We focus on learning in Hopfield networks, a special case with symmetric weights and fixed-point attractor dynamics. Specifically, we explore minimum energy flow (MEF) as a scalable convex objective for determining network parameters. We catalog various properties of MEF, such as biological plausibility, and then compare to classical approaches in the theory of learning. Trained Hopfield networks can perform unsupervised clustering and define novel error-correcting coding schemes. They also efficiently find hidden structures (cliques) in graph theory. We extend this known connection from graphs to hypergraphs and discover <i>n</i>-node networks with robust storage of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>2</mn><mrow><mi mathvariant="sans-serif">Ω</mi><mo>(</mo><msup><mi>n</mi><mrow><mn>1</mn><mo>−</mo><mi>ϵ</mi></mrow></msup><mo>)</mo></mrow></msup></semantics></math></inline-formula> memories for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϵ</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. In the case of graphs, we also determine a critical ratio of training samples at which networks generalize completely. |
format |
article |
author |
Christopher Hillar Tenzin Chan Rachel Taubman David Rolnick |
author_facet |
Christopher Hillar Tenzin Chan Rachel Taubman David Rolnick |
author_sort |
Christopher Hillar |
title |
Hidden Hypergraphs, Error-Correcting Codes, and Critical Learning in Hopfield Networks |
title_short |
Hidden Hypergraphs, Error-Correcting Codes, and Critical Learning in Hopfield Networks |
title_full |
Hidden Hypergraphs, Error-Correcting Codes, and Critical Learning in Hopfield Networks |
title_fullStr |
Hidden Hypergraphs, Error-Correcting Codes, and Critical Learning in Hopfield Networks |
title_full_unstemmed |
Hidden Hypergraphs, Error-Correcting Codes, and Critical Learning in Hopfield Networks |
title_sort |
hidden hypergraphs, error-correcting codes, and critical learning in hopfield networks |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/530fe3130c4548da95e254bcc23a234c |
work_keys_str_mv |
AT christopherhillar hiddenhypergraphserrorcorrectingcodesandcriticallearninginhopfieldnetworks AT tenzinchan hiddenhypergraphserrorcorrectingcodesandcriticallearninginhopfieldnetworks AT racheltaubman hiddenhypergraphserrorcorrectingcodesandcriticallearninginhopfieldnetworks AT davidrolnick hiddenhypergraphserrorcorrectingcodesandcriticallearninginhopfieldnetworks |
_version_ |
1718412283211677696 |