Automatic Model Determination for Quaternion NMF

Nonnegative Matrix Factorization (NMF) is a well-known method for Blind Source Separation (BSS). Recently, BSS for polarized signals in spectropolarimetric data, containing both polarization and spectral information, was introduced. This information was encoded in 4-dimensional Stokes vectors repres...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Giancarlo Sanchez, Erik Skau, Boian Alexandrov
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/531a2ddaf1c54bc7ad8b933b2127f1d0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Nonnegative Matrix Factorization (NMF) is a well-known method for Blind Source Separation (BSS). Recently, BSS for polarized signals in spectropolarimetric data, containing both polarization and spectral information, was introduced. This information was encoded in 4-dimensional Stokes vectors represented by quaternion numbers. In the proposed Quaternion NMF (QNMF), the common challenge of determining the (usually) unknown number of quaternion signals remained unaddressed. Estimating the number of signals (aka model determination) is important, since an underestimation of this number results in poor source separation and omission of signals, while overestimation leads to extraction of noisy signals without physical meaning. Here, we introduce a method for determining the number of polarized signals in spectropolarimetric data, named QNMF<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>. QNMF<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> integrates: (a) Quaternion Alternating Direction Method of Multipliers (QADMM) implemented for QNMF, (b) random resampling of the initial quaternion data, and (c) custom clustering of sets of QADMM solutions with same number of sources, <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>, needed to estimate the stability of the solutions. The appropriate latent dimension is determined based on the stability of the solutions. We demonstrate that, without any prior information, QNMF<inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> accurately extracts the correct number of signals used to generate synthetic quaternion datasets and a benchmark spectropolarimetric data.