Fixed-Bed Modification of Zeolitic Tuffs and Their Application for Cr(VI) Removal
Natural clinoptilolite tuff (CL) and chabazite-clinoptilolite tuff (CH) were modified in fixed-bed column by immobilization of hexadecyltrimethylammonium bromide (HDTMA-Br), then investigated as a sorbent for inorganic anions of Cr(VI). The proposed modification technique combined with surfactant so...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/531cd9fc9bf247eab27798dd9b557b09 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:531cd9fc9bf247eab27798dd9b557b09 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:531cd9fc9bf247eab27798dd9b557b092021-11-25T18:16:06ZFixed-Bed Modification of Zeolitic Tuffs and Their Application for Cr(VI) Removal10.3390/ma142270611996-1944https://doaj.org/article/531cd9fc9bf247eab27798dd9b557b092021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/22/7061https://doaj.org/toc/1996-1944Natural clinoptilolite tuff (CL) and chabazite-clinoptilolite tuff (CH) were modified in fixed-bed column by immobilization of hexadecyltrimethylammonium bromide (HDTMA-Br), then investigated as a sorbent for inorganic anions of Cr(VI). The proposed modification technique combined with surfactant solution batching allows minimizing the surfactant loses through foaming and crystallization and creation of stable organic coverage. The HDTMA loading depended on the mineral composition of the zeolitic tuff, the topology of its external surface, and process conditions. The maximum surface coverage was obtained by gradually dosing surfactant solution in the smallest volume of batches and corresponded up to 100% and 182% of external cation exchange capacity (ECEC) for mono and double layer coverage, respectively. In case of mono layer coverage, modification proceeds until the exhaustion of surfactant in supply solution, while in the double layer one, until equilibrium of HDTMA concentration in both zeolitic and liquid phases was established. The efficiency of Cr(VI) uptake by prepared surface modified zeolites (SMZs) increased with increasing of HDTMA loading. In the case of mono layer SMZs, the capacities of CH-HDTMA and CL-HDTMA were 10.3 and 5.4 mg/g, respectively, while in the case of double layer SMZs, the amount of Cr uptake on CH-HDTMA and CL-HDTMA were 16.8 and 15 mg/g, respectively. Ion exchange is the predominant mechanism of Cr(VI) sorption but it takes place only if modification resulted in at least partial double layer coverage. The XPS analysis reveals Cr(VI) reduction to a less-toxic Cr(III) by the electron donating N-containing groups and by reaction with Fe<sup>+2</sup> ions on the zeolite external surface.Jolanta Karolina WarchołPaulina SobolewskaWłodzimierz TylusRoman PetrusMDPI AGarticleclinoptilolitechabaziteHDTMA-Brfixed-bed column modificationCr(VI) removalTechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 7061, p 7061 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
clinoptilolite chabazite HDTMA-Br fixed-bed column modification Cr(VI) removal Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 |
spellingShingle |
clinoptilolite chabazite HDTMA-Br fixed-bed column modification Cr(VI) removal Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 Jolanta Karolina Warchoł Paulina Sobolewska Włodzimierz Tylus Roman Petrus Fixed-Bed Modification of Zeolitic Tuffs and Their Application for Cr(VI) Removal |
description |
Natural clinoptilolite tuff (CL) and chabazite-clinoptilolite tuff (CH) were modified in fixed-bed column by immobilization of hexadecyltrimethylammonium bromide (HDTMA-Br), then investigated as a sorbent for inorganic anions of Cr(VI). The proposed modification technique combined with surfactant solution batching allows minimizing the surfactant loses through foaming and crystallization and creation of stable organic coverage. The HDTMA loading depended on the mineral composition of the zeolitic tuff, the topology of its external surface, and process conditions. The maximum surface coverage was obtained by gradually dosing surfactant solution in the smallest volume of batches and corresponded up to 100% and 182% of external cation exchange capacity (ECEC) for mono and double layer coverage, respectively. In case of mono layer coverage, modification proceeds until the exhaustion of surfactant in supply solution, while in the double layer one, until equilibrium of HDTMA concentration in both zeolitic and liquid phases was established. The efficiency of Cr(VI) uptake by prepared surface modified zeolites (SMZs) increased with increasing of HDTMA loading. In the case of mono layer SMZs, the capacities of CH-HDTMA and CL-HDTMA were 10.3 and 5.4 mg/g, respectively, while in the case of double layer SMZs, the amount of Cr uptake on CH-HDTMA and CL-HDTMA were 16.8 and 15 mg/g, respectively. Ion exchange is the predominant mechanism of Cr(VI) sorption but it takes place only if modification resulted in at least partial double layer coverage. The XPS analysis reveals Cr(VI) reduction to a less-toxic Cr(III) by the electron donating N-containing groups and by reaction with Fe<sup>+2</sup> ions on the zeolite external surface. |
format |
article |
author |
Jolanta Karolina Warchoł Paulina Sobolewska Włodzimierz Tylus Roman Petrus |
author_facet |
Jolanta Karolina Warchoł Paulina Sobolewska Włodzimierz Tylus Roman Petrus |
author_sort |
Jolanta Karolina Warchoł |
title |
Fixed-Bed Modification of Zeolitic Tuffs and Their Application for Cr(VI) Removal |
title_short |
Fixed-Bed Modification of Zeolitic Tuffs and Their Application for Cr(VI) Removal |
title_full |
Fixed-Bed Modification of Zeolitic Tuffs and Their Application for Cr(VI) Removal |
title_fullStr |
Fixed-Bed Modification of Zeolitic Tuffs and Their Application for Cr(VI) Removal |
title_full_unstemmed |
Fixed-Bed Modification of Zeolitic Tuffs and Their Application for Cr(VI) Removal |
title_sort |
fixed-bed modification of zeolitic tuffs and their application for cr(vi) removal |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/531cd9fc9bf247eab27798dd9b557b09 |
work_keys_str_mv |
AT jolantakarolinawarchoł fixedbedmodificationofzeolitictuffsandtheirapplicationforcrviremoval AT paulinasobolewska fixedbedmodificationofzeolitictuffsandtheirapplicationforcrviremoval AT włodzimierztylus fixedbedmodificationofzeolitictuffsandtheirapplicationforcrviremoval AT romanpetrus fixedbedmodificationofzeolitictuffsandtheirapplicationforcrviremoval |
_version_ |
1718411379426197504 |