Biochar-Improved Growth and Physiology of <i>Ehretia asperula</i> under Water-Deficit Condition
<i>Ehretia asperula</i>’s physiological responses to growth performance following oak-wood biochar application under water stress conditions (WSC) and no water stress conditions (non-WSC) were investigated in a pot experiment. Biochar (WB) was incorporated into the soil at concentrations...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5336ae07b673408d82dc8653683a0610 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | <i>Ehretia asperula</i>’s physiological responses to growth performance following oak-wood biochar application under water stress conditions (WSC) and no water stress conditions (non-WSC) were investigated in a pot experiment. Biochar (WB) was incorporated into the soil at concentrations of 0, 5, 10, 15, and 20 tons ha<sup>−1</sup> before transplanting <i>Ehretia asperula</i> in the pots. One month after transplanting, <i>Ehretia asperula</i> plants were put under water stress by withholding water for ten days. Water stress significantly decreased the growth and physiology of <i>Ehretia asperula</i>. Under WSC, the application of WB at the concentrations of 15 and 20 tons ha<sup>−1</sup> to the soil increased the plant height; number of leaves; fresh and dry weight of the roots, shoots, and leaves; F<sub>v</sub>/F<sub>m</sub>; chlorophyll content; leaf relative water content; and soil moisture as well as decreased the relative ion leakage. The application of WB enhanced drought tolerance in <i>Ehretia asperula</i> plants by lowering the wilting point. The findings suggest that WB application at the concentration of 15 tons ha<sup>−1</sup> could be recommended for ensuring the best physiological responses and highest growth of <i>Ehretia asperula</i> plants. |
---|