Global climatology and trends in convective environments from ERA5 and rawinsonde data
Abstract Globally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has c...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/533e47ed830a4f35904880116465ff14 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:533e47ed830a4f35904880116465ff14 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:533e47ed830a4f35904880116465ff142021-12-02T17:52:28ZGlobal climatology and trends in convective environments from ERA5 and rawinsonde data10.1038/s41612-021-00190-x2397-3722https://doaj.org/article/533e47ed830a4f35904880116465ff142021-06-01T00:00:00Zhttps://doi.org/10.1038/s41612-021-00190-xhttps://doaj.org/toc/2397-3722Abstract Globally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.Mateusz TaszarekJohn T. AllenMattia MarchioHarold E. BrooksNature PortfolioarticleEnvironmental sciencesGE1-350Meteorology. ClimatologyQC851-999ENnpj Climate and Atmospheric Science, Vol 4, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Environmental sciences GE1-350 Meteorology. Climatology QC851-999 |
spellingShingle |
Environmental sciences GE1-350 Meteorology. Climatology QC851-999 Mateusz Taszarek John T. Allen Mattia Marchio Harold E. Brooks Global climatology and trends in convective environments from ERA5 and rawinsonde data |
description |
Abstract Globally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing. |
format |
article |
author |
Mateusz Taszarek John T. Allen Mattia Marchio Harold E. Brooks |
author_facet |
Mateusz Taszarek John T. Allen Mattia Marchio Harold E. Brooks |
author_sort |
Mateusz Taszarek |
title |
Global climatology and trends in convective environments from ERA5 and rawinsonde data |
title_short |
Global climatology and trends in convective environments from ERA5 and rawinsonde data |
title_full |
Global climatology and trends in convective environments from ERA5 and rawinsonde data |
title_fullStr |
Global climatology and trends in convective environments from ERA5 and rawinsonde data |
title_full_unstemmed |
Global climatology and trends in convective environments from ERA5 and rawinsonde data |
title_sort |
global climatology and trends in convective environments from era5 and rawinsonde data |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/533e47ed830a4f35904880116465ff14 |
work_keys_str_mv |
AT mateusztaszarek globalclimatologyandtrendsinconvectiveenvironmentsfromera5andrawinsondedata AT johntallen globalclimatologyandtrendsinconvectiveenvironmentsfromera5andrawinsondedata AT mattiamarchio globalclimatologyandtrendsinconvectiveenvironmentsfromera5andrawinsondedata AT haroldebrooks globalclimatologyandtrendsinconvectiveenvironmentsfromera5andrawinsondedata |
_version_ |
1718379166309548032 |