Biochemical and Structural Evidence in Support of a Coherent Model for the Formation of the Double-Helical Influenza A Virus Ribonucleoprotein

ABSTRACT Influenza A virions contain eight ribonucleoproteins (RNPs), each comprised of a negative-strand viral RNA, the viral polymerase, and multiple nucleoproteins (NPs) that coat the viral RNA. NP oligomerization along the viral RNA is mediated largely by a 28-amino-acid tail loop. Influenza vir...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Qiaozhen Ye, Tom S. Y. Guu, Douglas A. Mata, Rei-Lin Kuo, Bartram Smith, Robert M. Krug, Yizhi J. Tao
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2013
Materias:
Acceso en línea:https://doaj.org/article/534c95a258664c50b972349353083cf5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:534c95a258664c50b972349353083cf5
record_format dspace
spelling oai:doaj.org-article:534c95a258664c50b972349353083cf52021-11-15T15:40:21ZBiochemical and Structural Evidence in Support of a Coherent Model for the Formation of the Double-Helical Influenza A Virus Ribonucleoprotein10.1128/mBio.00467-122150-7511https://doaj.org/article/534c95a258664c50b972349353083cf52013-03-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00467-12https://doaj.org/toc/2150-7511ABSTRACT Influenza A virions contain eight ribonucleoproteins (RNPs), each comprised of a negative-strand viral RNA, the viral polymerase, and multiple nucleoproteins (NPs) that coat the viral RNA. NP oligomerization along the viral RNA is mediated largely by a 28-amino-acid tail loop. Influenza viral RNPs, which serve as the templates for viral RNA synthesis in the nuclei of infected cells, are not linear but rather are organized in hairpin-like double-helical structures. Here we present results that strongly support a coherent model for the assembly of the double-helical influenza virus RNP structure. First, we show that NP self-associates much more weakly in the absence of RNA than in its presence, indicating that oligomerization is very limited in the cytoplasm. We also show that once NP has oligomerized, it can dissociate in the absence of bound RNA, but only at a very slow rate, indicating that the NP scaffold remains intact when viral RNA dissociates from NPs to interact with the polymerase during viral RNA synthesis. In addition, we identify a previously unknown NP-NP interface that is likely responsible for organizing the double-helical viral RNP structure. This identification stemmed from our observation that NP lacking the oligomerization tail loop forms monomers and dimers. We determined the crystal structure of this NP dimer, which reveals this new NP-NP interface. Mutation of residues that disrupt this dimer interface does not affect oligomerization of NPs containing the tail loop but does inactivate the ability of NPs containing the tail loop to support viral RNA synthesis in minigenome assays. IMPORTANCE Influenza A virus, the causative agent of human pandemics and annual epidemics, contains eight RNA gene segments. Each RNA segment assumes the form of a rod-shaped, double-helical ribonucleoprotein (RNP) that contains multiple copies of a viral protein, the nucleoprotein (NP), which coats the RNA segment along its entire length. Previous studies showed that NP molecules can polymerize via a structural element called the tail loop, but the RNP assembly process is poorly understood. Here we show that influenza virus RNPs are likely assembled from NP monomers, which polymerize through the tail loop only in the presence of viral RNA. Using X-ray crystallography, we identified an additional way that NP molecules interact with each other. We hypothesize that this new interaction is responsible for organizing linear, single-stranded influenza virus RNPs into double-helical structures. Our results thus provide a coherent model for the assembly of the double-helical influenza virus RNP structure.Qiaozhen YeTom S. Y. GuuDouglas A. MataRei-Lin KuoBartram SmithRobert M. KrugYizhi J. TaoAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 4, Iss 1 (2013)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Qiaozhen Ye
Tom S. Y. Guu
Douglas A. Mata
Rei-Lin Kuo
Bartram Smith
Robert M. Krug
Yizhi J. Tao
Biochemical and Structural Evidence in Support of a Coherent Model for the Formation of the Double-Helical Influenza A Virus Ribonucleoprotein
description ABSTRACT Influenza A virions contain eight ribonucleoproteins (RNPs), each comprised of a negative-strand viral RNA, the viral polymerase, and multiple nucleoproteins (NPs) that coat the viral RNA. NP oligomerization along the viral RNA is mediated largely by a 28-amino-acid tail loop. Influenza viral RNPs, which serve as the templates for viral RNA synthesis in the nuclei of infected cells, are not linear but rather are organized in hairpin-like double-helical structures. Here we present results that strongly support a coherent model for the assembly of the double-helical influenza virus RNP structure. First, we show that NP self-associates much more weakly in the absence of RNA than in its presence, indicating that oligomerization is very limited in the cytoplasm. We also show that once NP has oligomerized, it can dissociate in the absence of bound RNA, but only at a very slow rate, indicating that the NP scaffold remains intact when viral RNA dissociates from NPs to interact with the polymerase during viral RNA synthesis. In addition, we identify a previously unknown NP-NP interface that is likely responsible for organizing the double-helical viral RNP structure. This identification stemmed from our observation that NP lacking the oligomerization tail loop forms monomers and dimers. We determined the crystal structure of this NP dimer, which reveals this new NP-NP interface. Mutation of residues that disrupt this dimer interface does not affect oligomerization of NPs containing the tail loop but does inactivate the ability of NPs containing the tail loop to support viral RNA synthesis in minigenome assays. IMPORTANCE Influenza A virus, the causative agent of human pandemics and annual epidemics, contains eight RNA gene segments. Each RNA segment assumes the form of a rod-shaped, double-helical ribonucleoprotein (RNP) that contains multiple copies of a viral protein, the nucleoprotein (NP), which coats the RNA segment along its entire length. Previous studies showed that NP molecules can polymerize via a structural element called the tail loop, but the RNP assembly process is poorly understood. Here we show that influenza virus RNPs are likely assembled from NP monomers, which polymerize through the tail loop only in the presence of viral RNA. Using X-ray crystallography, we identified an additional way that NP molecules interact with each other. We hypothesize that this new interaction is responsible for organizing linear, single-stranded influenza virus RNPs into double-helical structures. Our results thus provide a coherent model for the assembly of the double-helical influenza virus RNP structure.
format article
author Qiaozhen Ye
Tom S. Y. Guu
Douglas A. Mata
Rei-Lin Kuo
Bartram Smith
Robert M. Krug
Yizhi J. Tao
author_facet Qiaozhen Ye
Tom S. Y. Guu
Douglas A. Mata
Rei-Lin Kuo
Bartram Smith
Robert M. Krug
Yizhi J. Tao
author_sort Qiaozhen Ye
title Biochemical and Structural Evidence in Support of a Coherent Model for the Formation of the Double-Helical Influenza A Virus Ribonucleoprotein
title_short Biochemical and Structural Evidence in Support of a Coherent Model for the Formation of the Double-Helical Influenza A Virus Ribonucleoprotein
title_full Biochemical and Structural Evidence in Support of a Coherent Model for the Formation of the Double-Helical Influenza A Virus Ribonucleoprotein
title_fullStr Biochemical and Structural Evidence in Support of a Coherent Model for the Formation of the Double-Helical Influenza A Virus Ribonucleoprotein
title_full_unstemmed Biochemical and Structural Evidence in Support of a Coherent Model for the Formation of the Double-Helical Influenza A Virus Ribonucleoprotein
title_sort biochemical and structural evidence in support of a coherent model for the formation of the double-helical influenza a virus ribonucleoprotein
publisher American Society for Microbiology
publishDate 2013
url https://doaj.org/article/534c95a258664c50b972349353083cf5
work_keys_str_mv AT qiaozhenye biochemicalandstructuralevidenceinsupportofacoherentmodelfortheformationofthedoublehelicalinfluenzaavirusribonucleoprotein
AT tomsyguu biochemicalandstructuralevidenceinsupportofacoherentmodelfortheformationofthedoublehelicalinfluenzaavirusribonucleoprotein
AT douglasamata biochemicalandstructuralevidenceinsupportofacoherentmodelfortheformationofthedoublehelicalinfluenzaavirusribonucleoprotein
AT reilinkuo biochemicalandstructuralevidenceinsupportofacoherentmodelfortheformationofthedoublehelicalinfluenzaavirusribonucleoprotein
AT bartramsmith biochemicalandstructuralevidenceinsupportofacoherentmodelfortheformationofthedoublehelicalinfluenzaavirusribonucleoprotein
AT robertmkrug biochemicalandstructuralevidenceinsupportofacoherentmodelfortheformationofthedoublehelicalinfluenzaavirusribonucleoprotein
AT yizhijtao biochemicalandstructuralevidenceinsupportofacoherentmodelfortheformationofthedoublehelicalinfluenzaavirusribonucleoprotein
_version_ 1718427765646032896