Radiologists can visually predict mortality risk based on the gestalt of chest radiographs comparable to a deep learning network
Abstract Deep learning convolutional neural network (CNN) can predict mortality from chest radiographs, yet, it is unknown whether radiologists can perform the same task. Here, we investigate whether radiologists can visually assess image gestalt (defined as deviation from an unremarkable chest radi...
Enregistré dans:
Auteurs principaux: | Jakob Weiss, Jana Taron, Zexi Jin, Thomas Mayrhofer, Hugo J. W. L. Aerts, Michael T. Lu, Udo Hoffmann |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/534f579e4e264f86b5feb58c8815d5f9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An Overview of Deep Learning Approaches in Chest Radiograph
par: Shazia Anis, et autres
Publié: (2020) -
The Radiologist
Publié: (1994) -
Deep learning for classification of pediatric chest radiographs by WHO's standardized methodology.
par: Yiyun Chen, et autres
Publié: (2021) -
Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph
par: Po-Chih Kuo, et autres
Publié: (2021) -
Automated abnormality classification of chest radiographs using deep convolutional neural networks
par: Yu-Xing Tang, et autres
Publié: (2020)