Radiologists can visually predict mortality risk based on the gestalt of chest radiographs comparable to a deep learning network
Abstract Deep learning convolutional neural network (CNN) can predict mortality from chest radiographs, yet, it is unknown whether radiologists can perform the same task. Here, we investigate whether radiologists can visually assess image gestalt (defined as deviation from an unremarkable chest radi...
Guardado en:
Autores principales: | Jakob Weiss, Jana Taron, Zexi Jin, Thomas Mayrhofer, Hugo J. W. L. Aerts, Michael T. Lu, Udo Hoffmann |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/534f579e4e264f86b5feb58c8815d5f9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Overview of Deep Learning Approaches in Chest Radiograph
por: Shazia Anis, et al.
Publicado: (2020) -
The Radiologist
Publicado: (1994) -
Deep learning for classification of pediatric chest radiographs by WHO's standardized methodology.
por: Yiyun Chen, et al.
Publicado: (2021) -
Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph
por: Po-Chih Kuo, et al.
Publicado: (2021) -
Automated abnormality classification of chest radiographs using deep convolutional neural networks
por: Yu-Xing Tang, et al.
Publicado: (2020)