Accelerating phase-field-based microstructure evolution predictions via surrogate models trained by machine learning methods
Abstract The phase-field method is a powerful and versatile computational approach for modeling the evolution of microstructures and associated properties for a wide variety of physical, chemical, and biological systems. However, existing high-fidelity phase-field models are inherently computational...
Guardado en:
Autores principales: | David Montes de Oca Zapiain, James A. Stewart, Rémi Dingreville |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5364a3d9c8394b509924926f4946716f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mechanical behavior predictions of additively manufactured microstructures using functional Gaussian process surrogates
por: Robert Saunders, et al.
Publicado: (2021) -
Decoding defect statistics from diffractograms via machine learning
por: Cody Kunka, et al.
Publicado: (2021) -
Bayesian optimization with adaptive surrogate models for automated experimental design
por: Bowen Lei, et al.
Publicado: (2021) -
Accelerated design and discovery of perovskites with high conductivity for energy applications through machine learning
por: Pikee Priya, et al.
Publicado: (2021) -
Phase field modeling for the morphological and microstructural evolution of metallic materials under environmental attack
por: Talha Qasim Ansari, et al.
Publicado: (2021)