Accelerating phase-field-based microstructure evolution predictions via surrogate models trained by machine learning methods

Abstract The phase-field method is a powerful and versatile computational approach for modeling the evolution of microstructures and associated properties for a wide variety of physical, chemical, and biological systems. However, existing high-fidelity phase-field models are inherently computational...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: David Montes de Oca Zapiain, James A. Stewart, Rémi Dingreville
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/5364a3d9c8394b509924926f4946716f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares