Accelerating phase-field-based microstructure evolution predictions via surrogate models trained by machine learning methods
Abstract The phase-field method is a powerful and versatile computational approach for modeling the evolution of microstructures and associated properties for a wide variety of physical, chemical, and biological systems. However, existing high-fidelity phase-field models are inherently computational...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5364a3d9c8394b509924926f4946716f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sea el primero en dejar un comentario!