Accelerating phase-field-based microstructure evolution predictions via surrogate models trained by machine learning methods

Abstract The phase-field method is a powerful and versatile computational approach for modeling the evolution of microstructures and associated properties for a wide variety of physical, chemical, and biological systems. However, existing high-fidelity phase-field models are inherently computational...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: David Montes de Oca Zapiain, James A. Stewart, Rémi Dingreville
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/5364a3d9c8394b509924926f4946716f
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!