Introducing the T-shaped weir: a new nonlinear weir

In the present study, a new nonlinear weir called the T-shaped weir (TSW), which is a combination of the labyrinth weir (LW) and the piano key weir (PKW), was introduced, and its hydraulic performance was compared with the PKW. Based on the presence of the vertical walls at the inlet key, outlet key...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Behzad Noroozi, Jalal Bazargan, Akbar Safarzadeh
Formato: article
Lenguaje:EN
Publicado: IWA Publishing 2021
Materias:
Acceso en línea:https://doaj.org/article/53746bb63419474a83ad3818cd1a5d9a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In the present study, a new nonlinear weir called the T-shaped weir (TSW), which is a combination of the labyrinth weir (LW) and the piano key weir (PKW), was introduced, and its hydraulic performance was compared with the PKW. Based on the presence of the vertical walls at the inlet key, outlet key, or both keys, the TSW weirs were classified as type A, B, or C weirs, respectively. The flow pattern of different TSW cases was analyzed, and the discharge coefficient curves were provided. Furthermore, to accurately study the hydrodynamics of the tested weirs, 3D numerical simulations were performed using the FLOW-3D software. The results showed that inserting a vertical wall at the upstream of the outlet keys (C-TSW type) has a negligible effect on the hydraulic performance of the PKW. A maximum increase of 16% occurred in the discharge coefficient of the B-TSW in comparison to the PKW, and up to a head to height ratio (Ht/p) of 0.45, the effect of the vertical wall on increasing the performance of the B-TSW was maintained. Based on the experimental and numerical tests, the optimal height ratio of the vertical wall (Pd/P) in B-TSW with highest discharge capacity was determined to be equal to 0.4. HIGHLIGHTS A new nonlinear weir called the T-shaped weir (TSW), which is a combination of the labyrinth weir (LW) and the piano key weir (PKW), is introduced.; To investigate the hydrodynamics of the tested weirs in more detail, 3D numerical models are developed on the CFD-software FLOW-3D.; By testing different vertical wall sizes, the optimal size of the vertical wall is determined for B-TSW weir.;