Multimodal Feature-Assisted Continuous Driver Behavior Analysis and Solving for Edge-Enabled Internet of Connected Vehicles Using Deep Learning
The emerging technology of internet of connected vehicles (IoCV) introduced many new solutions for accident prevention and traffic safety by monitoring the behavior of drivers. In addition, monitoring drivers’ behavior to reduce accidents has attracted considerable attention from industry and academ...
Guardado en:
Autores principales: | Omar Aboulola, Mashael Khayyat, Basma Al-Harbi, Mohammed Saleh Ali Muthanna, Ammar Muthanna, Heba Fasihuddin, Majid H. Alsulami |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5378b03b131c4edfb2640a1a5733a15a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
<italic toggle="yes">Paracoccidioides</italic> Genomes Reflect High Levels of Species Divergence and Little Interspecific Gene Flow
por: Heidi Mavengere, et al.
Publicado: (2020) -
Abnormal Detection of Wireless Power Terminals in Untrusted Environment Based on Double Hidden Markov Model
por: Kehe Wu, et al.
Publicado: (2021) -
Finite-time asynchronous sliding mode control for Markov jump systems with actuator saturation
por: Yuqin Si, et al.
Publicado: (2021) -
Adaptation to driver-assistance systems depending on experience
por: Ucińska Monika
Publicado: (2021) -
Enhanced PDR-BLE Compensation Mechanism Based on HMM and AWCLA for Improving Indoor Localization
por: Harun Jamil, et al.
Publicado: (2021)