Steady state non-Newtonian flow with strain rate dependent viscosity in domains with cylindrical outlets to infinity

The paper deals with a stationary non-Newtonian flow of a viscous fluid in unbounded domains with cylindrical outlets to infinity. The viscosity is assumed to be smoothly dependent on the gradient of the velocity. Applying the generalized Banach fixed point theorem, we prove the existence, uniquene...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Grigory Panasenko, Konstantin Pileckas, Bogdan Vernescu
Formato: article
Lenguaje:EN
Publicado: Vilnius University Press 2021
Materias:
Acceso en línea:https://doaj.org/article/537f6d4a301f4116bb457e5af79c5010
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The paper deals with a stationary non-Newtonian flow of a viscous fluid in unbounded domains with cylindrical outlets to infinity. The viscosity is assumed to be smoothly dependent on the gradient of the velocity. Applying the generalized Banach fixed point theorem, we prove the existence, uniqueness and high order regularity of solutions stabilizing in the outlets to the prescribed quasi-Poiseuille flows. Varying the limit quasi-Poiseuille flows, we prove the stability of the solution.