Steady state non-Newtonian flow with strain rate dependent viscosity in domains with cylindrical outlets to infinity
The paper deals with a stationary non-Newtonian flow of a viscous fluid in unbounded domains with cylindrical outlets to infinity. The viscosity is assumed to be smoothly dependent on the gradient of the velocity. Applying the generalized Banach fixed point theorem, we prove the existence, uniquene...
Guardado en:
Autores principales: | Grigory Panasenko, Konstantin Pileckas, Bogdan Vernescu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Vilnius University Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/537f6d4a301f4116bb457e5af79c5010 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The nanofluid flows in the channel with linearly varying wall temperature
por: Kai-Xin Hu, et al.
Publicado: (2021) -
On global classical solutions to one-dimensional compressible Navier–Stokes/Allen–Cahn system with density-dependent viscosity and vacuum
por: Menglong Su
Publicado: (2021) -
Rheological Characterization of Non-Newtonian Mixtures by Pressure Pipe Tests
por: Armando Carravetta, et al.
Publicado: (2021) -
On the uniqueness for weak solutions of steady double-phase fluids
por: Abdelwahed Mohamed, et al.
Publicado: (2021) -
Analysis of Newtonian heating and higher-order chemical reaction on a Maxwell nanofluid in a rotating frame with gyrotactic microorganisms and variable heat source/sink
por: Yu-Ming Chu, et al.
Publicado: (2021)