Eden Library: A long-term database for storing agricultural multi-sensor datasets from UAV and proximal platforms
In modern agriculture, visual recognition systems based on deep learning are arising to allow autonomous machines to execute field operations in crops. However, for obtaining high performances, these methods need high amounts of data, which are usually scarce in agriculture. The main reason is that...
Enregistré dans:
Auteurs principaux: | Nikos Mylonas, Ioannis Malounas, Sofia Mouseti, Eleanna Vali, Borja Espejo-Garcia, Spyros Fountas |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2022
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/538b7cb068d9449b9d4e0b673a6acaa6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Exploring the susceptibility of smart farming: Identified opportunities and challenges
par: Elsa Jerhamre, et autres
Publié: (2022) -
Applied Economics Teaching Resources
Publié: (2021) -
Using UAV-based thermal imagery to detect crop water status variability in cotton
par: Lorena N. Lacerda, et autres
Publié: (2022) -
Fingerlings mass estimation: A comparison between deep and shallow learning algorithms
par: Adair da Silva Oliveira Junior, et autres
Publié: (2021) -
Near Real Time Monitoring of Potato Late Blight Disease Severity using Field Based Hyperspectral Observation
par: Ramprasad Kundu, et autres
Publié: (2021)