Textual Backdoor Defense via Poisoned Sample Recognition

Deep learning models are vulnerable to backdoor attacks. The success rate of textual backdoor attacks based on data poisoning in existing research is as high as 100%. In order to enhance the natural language processing model’s defense against backdoor attacks, we propose a textual backdoor defense m...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Kun Shao, Yu Zhang, Junan Yang, Hui Liu
Format: article
Langue:EN
Publié: MDPI AG 2021
Sujets:
T
Accès en ligne:https://doaj.org/article/539075c4b9b94a4daaa69c6db1972118
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!