A first-principles phase field method for quantitatively predicting multi-composition phase separation without thermodynamic empirical parameter

Predicting alloy microstructures with parameter-free theoretical schemes remains a challenge. Here the authors derive a general phase field approach to reproduce the microstructural evolution of a nickel-aluminum alloy as a function of composition only and without empirical thermodynamic parameters....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Swastibrata Bhattacharyya, Ryoji Sahara, Kaoru Ohno
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/5392a4b1b2ec4b8986d9d1897b0d8912
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5392a4b1b2ec4b8986d9d1897b0d8912
record_format dspace
spelling oai:doaj.org-article:5392a4b1b2ec4b8986d9d1897b0d89122021-12-02T15:36:21ZA first-principles phase field method for quantitatively predicting multi-composition phase separation without thermodynamic empirical parameter10.1038/s41467-019-11248-z2041-1723https://doaj.org/article/5392a4b1b2ec4b8986d9d1897b0d89122019-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-11248-zhttps://doaj.org/toc/2041-1723Predicting alloy microstructures with parameter-free theoretical schemes remains a challenge. Here the authors derive a general phase field approach to reproduce the microstructural evolution of a nickel-aluminum alloy as a function of composition only and without empirical thermodynamic parameters.Swastibrata BhattacharyyaRyoji SaharaKaoru OhnoNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Swastibrata Bhattacharyya
Ryoji Sahara
Kaoru Ohno
A first-principles phase field method for quantitatively predicting multi-composition phase separation without thermodynamic empirical parameter
description Predicting alloy microstructures with parameter-free theoretical schemes remains a challenge. Here the authors derive a general phase field approach to reproduce the microstructural evolution of a nickel-aluminum alloy as a function of composition only and without empirical thermodynamic parameters.
format article
author Swastibrata Bhattacharyya
Ryoji Sahara
Kaoru Ohno
author_facet Swastibrata Bhattacharyya
Ryoji Sahara
Kaoru Ohno
author_sort Swastibrata Bhattacharyya
title A first-principles phase field method for quantitatively predicting multi-composition phase separation without thermodynamic empirical parameter
title_short A first-principles phase field method for quantitatively predicting multi-composition phase separation without thermodynamic empirical parameter
title_full A first-principles phase field method for quantitatively predicting multi-composition phase separation without thermodynamic empirical parameter
title_fullStr A first-principles phase field method for quantitatively predicting multi-composition phase separation without thermodynamic empirical parameter
title_full_unstemmed A first-principles phase field method for quantitatively predicting multi-composition phase separation without thermodynamic empirical parameter
title_sort first-principles phase field method for quantitatively predicting multi-composition phase separation without thermodynamic empirical parameter
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/5392a4b1b2ec4b8986d9d1897b0d8912
work_keys_str_mv AT swastibratabhattacharyya afirstprinciplesphasefieldmethodforquantitativelypredictingmulticompositionphaseseparationwithoutthermodynamicempiricalparameter
AT ryojisahara afirstprinciplesphasefieldmethodforquantitativelypredictingmulticompositionphaseseparationwithoutthermodynamicempiricalparameter
AT kaoruohno afirstprinciplesphasefieldmethodforquantitativelypredictingmulticompositionphaseseparationwithoutthermodynamicempiricalparameter
AT swastibratabhattacharyya firstprinciplesphasefieldmethodforquantitativelypredictingmulticompositionphaseseparationwithoutthermodynamicempiricalparameter
AT ryojisahara firstprinciplesphasefieldmethodforquantitativelypredictingmulticompositionphaseseparationwithoutthermodynamicempiricalparameter
AT kaoruohno firstprinciplesphasefieldmethodforquantitativelypredictingmulticompositionphaseseparationwithoutthermodynamicempiricalparameter
_version_ 1718386288504078336