Utilizing machine learning to improve clinical trial design for acute respiratory distress syndrome
Abstract Heterogeneous patient populations, complex pharmacology and low recruitment rates in the Intensive Care Unit (ICU) have led to the failure of many clinical trials. Recently, machine learning (ML) emerged as a new technology to process and identify big data relationships, enabling a new era...
Guardado en:
Autores principales: | E. Schwager, K. Jansson, A. Rahman, S. Schiffer, Y. Chang, G. Boverman, B. Gross, M. Xu-Wilson, P. Boehme, H. Truebel, J. J. Frassica |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/539b553a776342559af5a398b474ad15 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Performance and clinical utility of supervised machine-learning approaches in detecting familial hypercholesterolaemia in primary care
por: Ralph K. Akyea, et al.
Publicado: (2020) -
Wearable radio-frequency sensing of respiratory rate, respiratory volume, and heart rate
por: Pragya Sharma, et al.
Publicado: (2020) -
Social media language of healthcare super-utilizers
por: Sharath Chandra Guntuku, et al.
Publicado: (2021) -
Measurement of respiratory rate using wearable devices and applications to COVID-19 detection
por: Aravind Natarajan, et al.
Publicado: (2021) -
Risk of acute respiratory infection and acute cardiovascular events following acute respiratory infection among adults with increased cardiovascular risk in England between 2008 and 2018: a retrospective, population-based cohort study
por: Jennifer A Davidson, MSc, et al.
Publicado: (2021)