Forecasting the Daily Maximal and Minimal Temperatures from Radiosonde Measurements Using Neural Networks
This study investigates the potential of direct prediction of daily extremes of temperature at 2 m from a vertical profile measurement using neural networks (NNs). The analysis is based on 3800 daily profiles measured in the period 2004–2019. Various setups of dense sequential NNs are trained to pre...
Enregistré dans:
Auteurs principaux: | Gregor Skok, Doruntina Hoxha, Žiga Zaplotnik |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/53a914e579b74611b9ede873e1180743 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Radiosonde comparison of ERA5 and ERA-Interim reanalysis datasets over tropical oceans
par: Meri Virman, et autres
Publié: (2021) -
FAO Penman-Monteith equation for reference evapotranspiration from missing data
par: Carvalho,Luiz Gonsaga de, et autres
Publié: (2013) -
Evaluation of early-age cracking risk in mass concrete footings under different placement conditions
par: Nguyen,Chuc Trong, et autres
Publié: (2021) -
Prediction Models for Frost/Low-Temperature Stress in Subtropical Fruit Plantations
par: Shashi Kumar Sharma
Publié: (2012) -
VERTICAL TEMPERATURE AND MOISTURE STRUCTURE IN LOWER ATMOSPHERE RETRIVED FROM TERRA/MODIS
par: Kim,Y. S, et autres
Publié: (2004)