Quantitative analysis of metastatic breast cancer in mice using deep learning on cryo-image data
Abstract Cryo-imaging sections and images a whole mouse and provides ~ 120-GBytes of microscopic 3D color anatomy and fluorescence images, making fully manual analysis of metastases an onerous task. A convolutional neural network (CNN)-based metastases segmentation algorithm included three steps: ca...
Guardado en:
Autores principales: | Yiqiao Liu, Madhusudhana Gargesha, Mohammed Qutaish, Zhuxian Zhou, Peter Qiao, Zheng-Rong Lu, David L. Wilson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/53b589638ab74fa5a3ffbad5db734d76 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Metastatic Breast Cancer to the Urinary Bladder in the Caribbean
por: Saara Mohammed, et al.
Publicado: (2021) -
Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and image simulation
por: Sara Sheibani, et al.
Publicado: (2021) -
DeepEMhancer: a deep learning solution for cryo-EM volume post-processing
por: Ruben Sanchez-Garcia, et al.
Publicado: (2021) -
Quantitative Imaging Biomarkers of the Whole Liver Tumor Burden Improve Survival Prediction in Metastatic Pancreatic Cancer
por: Leonie Gebauer, et al.
Publicado: (2021) -
Beam image-shift accelerated data acquisition for near-atomic resolution single-particle cryo-electron tomography
por: Jonathan Bouvette, et al.
Publicado: (2021)