Machine learning based early warning system enables accurate mortality risk prediction for COVID-19

Methods to stratify patients according to mortality risk are essential to allocate limited heath resources during the COVID-19 crisis. Here, using machine learning methods, the authors present a mortality risk prediction model for COVID-19 that uses patients’ clinical data on admission to stratify p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yue Gao, Guang-Yao Cai, Wei Fang, Hua-Yi Li, Si-Yuan Wang, Lingxi Chen, Yang Yu, Dan Liu, Sen Xu, Peng-Fei Cui, Shao-Qing Zeng, Xin-Xia Feng, Rui-Di Yu, Ya Wang, Yuan Yuan, Xiao-Fei Jiao, Jian-Hua Chi, Jia-Hao Liu, Ru-Yuan Li, Xu Zheng, Chun-Yan Song, Ning Jin, Wen-Jian Gong, Xing-Yu Liu, Lei Huang, Xun Tian, Lin Li, Hui Xing, Ding Ma, Chun-Rui Li, Fei Ye, Qing-Lei Gao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/53b866732ca841229e3c69def25e9178
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Methods to stratify patients according to mortality risk are essential to allocate limited heath resources during the COVID-19 crisis. Here, using machine learning methods, the authors present a mortality risk prediction model for COVID-19 that uses patients’ clinical data on admission to stratify patients by mortality risk.