Machine learning based early warning system enables accurate mortality risk prediction for COVID-19

Methods to stratify patients according to mortality risk are essential to allocate limited heath resources during the COVID-19 crisis. Here, using machine learning methods, the authors present a mortality risk prediction model for COVID-19 that uses patients’ clinical data on admission to stratify p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yue Gao, Guang-Yao Cai, Wei Fang, Hua-Yi Li, Si-Yuan Wang, Lingxi Chen, Yang Yu, Dan Liu, Sen Xu, Peng-Fei Cui, Shao-Qing Zeng, Xin-Xia Feng, Rui-Di Yu, Ya Wang, Yuan Yuan, Xiao-Fei Jiao, Jian-Hua Chi, Jia-Hao Liu, Ru-Yuan Li, Xu Zheng, Chun-Yan Song, Ning Jin, Wen-Jian Gong, Xing-Yu Liu, Lei Huang, Xun Tian, Lin Li, Hui Xing, Ding Ma, Chun-Rui Li, Fei Ye, Qing-Lei Gao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/53b866732ca841229e3c69def25e9178
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:53b866732ca841229e3c69def25e9178
record_format dspace
spelling oai:doaj.org-article:53b866732ca841229e3c69def25e91782021-12-02T18:01:49ZMachine learning based early warning system enables accurate mortality risk prediction for COVID-1910.1038/s41467-020-18684-22041-1723https://doaj.org/article/53b866732ca841229e3c69def25e91782020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18684-2https://doaj.org/toc/2041-1723Methods to stratify patients according to mortality risk are essential to allocate limited heath resources during the COVID-19 crisis. Here, using machine learning methods, the authors present a mortality risk prediction model for COVID-19 that uses patients’ clinical data on admission to stratify patients by mortality risk.Yue GaoGuang-Yao CaiWei FangHua-Yi LiSi-Yuan WangLingxi ChenYang YuDan LiuSen XuPeng-Fei CuiShao-Qing ZengXin-Xia FengRui-Di YuYa WangYuan YuanXiao-Fei JiaoJian-Hua ChiJia-Hao LiuRu-Yuan LiXu ZhengChun-Yan SongNing JinWen-Jian GongXing-Yu LiuLei HuangXun TianLin LiHui XingDing MaChun-Rui LiFei YeQing-Lei GaoNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yue Gao
Guang-Yao Cai
Wei Fang
Hua-Yi Li
Si-Yuan Wang
Lingxi Chen
Yang Yu
Dan Liu
Sen Xu
Peng-Fei Cui
Shao-Qing Zeng
Xin-Xia Feng
Rui-Di Yu
Ya Wang
Yuan Yuan
Xiao-Fei Jiao
Jian-Hua Chi
Jia-Hao Liu
Ru-Yuan Li
Xu Zheng
Chun-Yan Song
Ning Jin
Wen-Jian Gong
Xing-Yu Liu
Lei Huang
Xun Tian
Lin Li
Hui Xing
Ding Ma
Chun-Rui Li
Fei Ye
Qing-Lei Gao
Machine learning based early warning system enables accurate mortality risk prediction for COVID-19
description Methods to stratify patients according to mortality risk are essential to allocate limited heath resources during the COVID-19 crisis. Here, using machine learning methods, the authors present a mortality risk prediction model for COVID-19 that uses patients’ clinical data on admission to stratify patients by mortality risk.
format article
author Yue Gao
Guang-Yao Cai
Wei Fang
Hua-Yi Li
Si-Yuan Wang
Lingxi Chen
Yang Yu
Dan Liu
Sen Xu
Peng-Fei Cui
Shao-Qing Zeng
Xin-Xia Feng
Rui-Di Yu
Ya Wang
Yuan Yuan
Xiao-Fei Jiao
Jian-Hua Chi
Jia-Hao Liu
Ru-Yuan Li
Xu Zheng
Chun-Yan Song
Ning Jin
Wen-Jian Gong
Xing-Yu Liu
Lei Huang
Xun Tian
Lin Li
Hui Xing
Ding Ma
Chun-Rui Li
Fei Ye
Qing-Lei Gao
author_facet Yue Gao
Guang-Yao Cai
Wei Fang
Hua-Yi Li
Si-Yuan Wang
Lingxi Chen
Yang Yu
Dan Liu
Sen Xu
Peng-Fei Cui
Shao-Qing Zeng
Xin-Xia Feng
Rui-Di Yu
Ya Wang
Yuan Yuan
Xiao-Fei Jiao
Jian-Hua Chi
Jia-Hao Liu
Ru-Yuan Li
Xu Zheng
Chun-Yan Song
Ning Jin
Wen-Jian Gong
Xing-Yu Liu
Lei Huang
Xun Tian
Lin Li
Hui Xing
Ding Ma
Chun-Rui Li
Fei Ye
Qing-Lei Gao
author_sort Yue Gao
title Machine learning based early warning system enables accurate mortality risk prediction for COVID-19
title_short Machine learning based early warning system enables accurate mortality risk prediction for COVID-19
title_full Machine learning based early warning system enables accurate mortality risk prediction for COVID-19
title_fullStr Machine learning based early warning system enables accurate mortality risk prediction for COVID-19
title_full_unstemmed Machine learning based early warning system enables accurate mortality risk prediction for COVID-19
title_sort machine learning based early warning system enables accurate mortality risk prediction for covid-19
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/53b866732ca841229e3c69def25e9178
work_keys_str_mv AT yuegao machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT guangyaocai machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT weifang machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT huayili machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT siyuanwang machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT lingxichen machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT yangyu machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT danliu machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT senxu machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT pengfeicui machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT shaoqingzeng machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT xinxiafeng machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT ruidiyu machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT yawang machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT yuanyuan machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT xiaofeijiao machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT jianhuachi machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT jiahaoliu machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT ruyuanli machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT xuzheng machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT chunyansong machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT ningjin machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT wenjiangong machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT xingyuliu machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT leihuang machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT xuntian machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT linli machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT huixing machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT dingma machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT chunruili machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT feiye machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
AT qingleigao machinelearningbasedearlywarningsystemenablesaccuratemortalityriskpredictionforcovid19
_version_ 1718378926814789632