An Interaction-Based Convolutional Neural Network (ICNN) Toward a Better Understanding of COVID-19 X-ray Images
The field of explainable artificial intelligence (XAI) aims to build explainable and interpretable machine learning (or deep learning) methods without sacrificing prediction performance. Convolutional neural networks (CNNs) have been successful in making predictions, especially in image classificati...
Enregistré dans:
| Auteurs principaux: | Shaw-Hwa Lo, Yiqiao Yin |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
MDPI AG
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/53ec9eee07714ac8a782832afb013df0 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
EDITORIAL: New Horizon for Industrial Engineering and Management
par: Ugljesa Marjanovic
Publié: (2021) -
Forty's years of quantitative research in China: Retrospectives and perspectives
par: Zongwu Cai, et autres
Publié: (2021) -
Editorial Board
Publié: (2021) -
Impact of Lung Segmentation on the Diagnosis and Explanation of COVID-19 in Chest X-ray Images
par: Lucas O. Teixeira, et autres
Publié: (2021) -
Cadena de suministros para la exportación de granos andinos a Estados Unidos
par: José Enrique Guardián-Sedano, et autres
Publié: (2019)