Identifying genetically driven clinical phenotypes using linear mixed models

Use of general linear mixed models (GLMMs) in genetic variance analysis can quantify the relative contribution of additive effects from genetic variation on a given trait. Here, Jonathan Mosley and colleagues apply GLMM in a phenome-wide analysis and show that genetic variations in the HLA region ar...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jonathan D. Mosley, John S. Witte, Emma K. Larkin, Lisa Bastarache, Christian M. Shaffer, Jason H. Karnes, C. Michael Stein, Elizabeth Phillips, Scott J. Hebbring, Murray H. Brilliant, John Mayer, Zhan Ye, Dan M. Roden, Joshua C. Denny
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/5401bbf278ce480b9e71837f9f3eca2c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Use of general linear mixed models (GLMMs) in genetic variance analysis can quantify the relative contribution of additive effects from genetic variation on a given trait. Here, Jonathan Mosley and colleagues apply GLMM in a phenome-wide analysis and show that genetic variations in the HLA region are associated with 44 phenotypes, 5 phenotypes which were not previously reported in GWASes.